【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(-2,-4,B0,-4,C1,-1).

1)畫出△ABC關(guān)于點(diǎn)O的中心對(duì)稱圖形△A1B1C1.

2)畫出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的△A2B2C2,直接寫出點(diǎn)C2的坐標(biāo)為   .

3)若△ABC內(nèi)一點(diǎn)Pm,n)繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的對(duì)應(yīng)點(diǎn)為Q,則Q的坐標(biāo)為   .(用含m,n的式子表示)

【答案】1)答案見解析;(2)答案見解析,C2(1,1);(3)(-n, m).

【解析】

1)利用關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征寫出點(diǎn)A1B1、C1的坐標(biāo),然后描點(diǎn)即可得到△A1B1C1;

2)根據(jù)網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫出A、B、C對(duì)稱點(diǎn)A2B2、C2,從而得到△A2B2C2

3)利用(2)中對(duì)應(yīng)點(diǎn)的坐標(biāo)規(guī)律寫出Q點(diǎn)坐標(biāo).

解:(1)如圖所示,△A1B1C1即為所求;

2)如圖所示,△A2B2C2即為所求,C2(1,1);

3)根據(jù)(2)中A(-2,-4)的對(duì)應(yīng)點(diǎn)A24,-2)可知,點(diǎn)Pmn)繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的對(duì)應(yīng)點(diǎn)Q坐標(biāo)為(-n, m).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用合適的方法解方程:

1)(2t+3232t+3

2)(2x129x22

32x25x1

4x2+4x50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電商時(shí)代使得網(wǎng)購更加便捷和普及.小張響應(yīng)國(guó)家號(hào)召,自主創(chuàng)業(yè),開了家淘寶店.他購進(jìn)一種成本為100/件的新商品,在試銷中發(fā)現(xiàn):銷售單價(jià)x(元)與每天銷售量y(件)之間滿足如圖所示的關(guān)系.

1)求yx之間的函數(shù)關(guān)系式;

2)若某天小張銷售該產(chǎn)品獲得的利潤(rùn)為1200元,求銷售單價(jià)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=-x2+1,下列結(jié)論:
①拋物線開口向上;
②拋物線與x軸交于點(diǎn)(-1,0)和點(diǎn)(10);
③拋物線的對(duì)稱軸是y軸;
④拋物線的頂點(diǎn)坐標(biāo)是(01);
⑤拋物線y=-x2+1是由拋物線y=-x2向上平移1個(gè)單位得到的.
其中正確的個(gè)數(shù)有(

A. 5個(gè)B. 4個(gè)C. 3個(gè)

D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過兩點(diǎn)A(﹣30),B0,3),且其對(duì)稱軸為直線x=﹣1

1)求此拋物線的解析式;

2)若點(diǎn)P是拋物線上點(diǎn)A與點(diǎn)B之間的動(dòng)點(diǎn)(不包括點(diǎn)A,點(diǎn)B),求PAB的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn),將繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn),則點(diǎn)的坐標(biāo)是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸只有一個(gè)公共點(diǎn),且與軸交于點(diǎn)

(1)試判斷該拋物線的開口方向,說明理由;

(2),軸交該拋物線于點(diǎn),且是直角三角形,求拋物線的解析式;

(3)若直線()與該拋物線有兩個(gè)交點(diǎn),且與軸和軸分別交于點(diǎn),記的面積為,求的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點(diǎn)E為AB的中點(diǎn).

(1)求證:△ADC∽△ACB.

(2)若AD=2,AB=3,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明學(xué)習(xí)電學(xué)知識(shí)后,用四個(gè)開關(guān)按鍵(每個(gè)開關(guān)按鍵閉合的可能性相等)、一個(gè)電源和一個(gè)燈泡設(shè)計(jì)了一個(gè)電路圖

(1)若小明設(shè)計(jì)的電路圖如圖1(四個(gè)開關(guān)按鍵都處于打開狀態(tài))如圖所示,求任意閉合一個(gè)開關(guān)按鍵,燈泡能發(fā)光的概率;

(2)若小明設(shè)計(jì)的電路圖如圖2(四個(gè)開關(guān)按鍵都處于打開狀態(tài))如圖所示,求同時(shí)時(shí)閉合其中的兩個(gè)開關(guān)按鍵,燈泡能發(fā)光的概率.(用列表或樹狀圖法)

查看答案和解析>>

同步練習(xí)冊(cè)答案