【題目】如圖,在等腰RtABC中,C=90°,點(diǎn)O是AB的中點(diǎn),邊AC的長為6,將一塊邊長足夠長的三角板的直角頂點(diǎn)放在O點(diǎn)處,將三角板繞著點(diǎn)O旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點(diǎn)為點(diǎn)D,另一條直角邊與BC相交,交點(diǎn)為點(diǎn)E,則等腰直角三角形ABC的邊被三角板覆蓋部分的兩條線段CD與CE長度之和為( 。

A. 7 B. 6 C. 5 D. 4

【答案】B

【解析】

連接OC,證明OCD≌△OBE,根據(jù)全等三角形的性質(zhì)得到CD=BE即可解決問題.

連接OC,

AC=BC,AO=BO,ACB=90°,

∴∠ACO=BCO=ACB=45°,OCAB,A=B=45°,

OC=OB,

∵∠BOE+EOD+AOD=180°,EOD=90°,

∴∠BOE+AOD=90°,

又∵∠COD+AOD=90°,

∴∠BOE=COD,

OCDOBE中,

,

∴△OCD≌△OBE(ASA),

CD=BE,

CD+CE=BE+CE=BC═AC=6.
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場一種商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價(jià)促銷.

(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價(jià)降至每件32.4元,求兩次下降的百分率;

(2)經(jīng)調(diào)查,若每降價(jià)0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直徑為1000毫米的圓柱形油罐內(nèi)裝進(jìn)一些油.其橫截面如圖.油面寬AB=600毫米.

(1)求油的最大深度;

(2)如果再注入一些油后,油面寬變?yōu)?/span>800毫米,此時(shí)油面上升了多少毫米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的高,AE是∠BAC的平分線,∠EAD10°,∠B50°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:的直徑,延長線上的任意一點(diǎn),過點(diǎn)的切線,切點(diǎn)為的平分線交于點(diǎn)

(1)如圖,若恰好等于,求的度數(shù);

(2)如圖,若點(diǎn)位于中不同的位置,的結(jié)論是否仍然成立?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

12x2+4x﹣3=0(配方法解)

25x2﹣8x+2=0(公式法解)

33x﹣52=25﹣x

4)(3x+2)(x+3=x+14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)A(3,0),B(2,﹣3),并且以x=1為對(duì)稱軸.

(1)求此函數(shù)的解析式;

(2)作出二次函數(shù)的大致圖象

(3)在對(duì)稱軸x=1上是否存在一點(diǎn)P,使△PABPA=PB?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OP平分,,垂足分別為AB.下列結(jié)論中,一定成立的是_________.(填序號(hào)) ;②平分;③ 垂直平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線相離,于點(diǎn),,相交于點(diǎn),相切于點(diǎn),的延長線交直線于點(diǎn).若上存在點(diǎn),使是以為底邊的等腰三角形,則半徑的取值范圍是:________

查看答案和解析>>

同步練習(xí)冊(cè)答案