【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.

(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;

(2)在拋物線的對稱軸x=-1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標(biāo);

(3)設(shè)點P為拋物線的對稱軸x=-1上的一個動點,求使△BPC為直角三角形的點P的坐標(biāo).

【答案】(1)y=x+3;y=-x2-2x+3;(2)(-1,2);(3)(-1,-2)或(-1,4)或(-1, 或(-1,).

【解析】

試題分析:(1)先把點A,C的坐標(biāo)分別代入拋物線解析式得到a和b,c的關(guān)系式,再根據(jù)拋物線的對稱軸方程可得a和b的關(guān)系,再聯(lián)立得到方程組,解方程組,求出a,b,c的值即可得到拋物線解析式;把B、C兩點的坐標(biāo)代入直線y=mx+n,解方程組求出m和n的值即可得到直線解析式;

(2)設(shè)直線BC與對稱軸x=-1的交點為M,則此時MA+MC的值最。褁=-1代入直線y=x+3得y的值,即可求出點M坐標(biāo);

(3)設(shè)P(-1,t),又因為B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三種情況分別討論求出符合題意t值即可求出點P的坐標(biāo).

試題解析:(1)依題意得:,解之得:,

∴拋物線解析式為y=-x2-2x+3

∵對稱軸為x=-1,且拋物線經(jīng)過A(1,0),

∴把B(-3,0)、C(0,3)分別代入直線y=mx+n,

解之得:,

∴直線y=mx+n的解析式為y=x+3;

(2)設(shè)直線BC與對稱軸x=-1的交點為M,則此時MA+MC的值最。

把x=-1代入直線y=x+3得,y=2,

∴M(-1,2),

即當(dāng)點M到點A的距離與到點C的距離之和最小時M的坐標(biāo)為(-1,2);

(3)設(shè)P(-1,t),

又∵B(-3,0),C(0,3),

∴BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,

若點B為直角頂點,BC2+PB2=PC2:18+4+t2=t2-6t+10解之得:t=-2;

若點C為直角頂點,BC2+PC2=PB2:18+t2-6t+10=4+t2解之得:t=4,

若點P為直角頂點,PB2+PC2=BC2:4+t2+t2-6t+10=18解之得:t1=,t2=;

綜上所述P的坐標(biāo)為(-1,-2)或(-1,4)或(-1, 或(-1,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:xy24x_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD,已知ABCD,若再增加一個_________條件只填寫一個可得四邊形ABCD是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,CD⊥AB于點D,CD=BD,BE平分∠ABC,點H是BC邊的中點,連接DH,交BE于點G,連接CG.
(1)求證:△ADC≌△FDB;
(2)求證:CE= BF;
(3)判斷△ECG的形狀,并證明你的結(jié)論;
(4)猜想BG與CE的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若把不等式組 的解集在數(shù)軸上表示出來,則其對應(yīng)的圖形為(
A.長方形
B.線段
C.射線
D.直線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E,F(xiàn)分別在BC和CD上,下列結(jié)論: ①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+
其中正確的序號是(把你認(rèn)為正確的都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(1)班學(xué)生在完成課題學(xué)習(xí)體質(zhì)健康測試中的數(shù)據(jù)分析后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長跑、鉛球中選一項進(jìn)行訓(xùn)練,訓(xùn)練后都進(jìn)行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.

請你根據(jù)上面提供的信息回答下列問題:

1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學(xué)生 人,訓(xùn)練后籃球定時定點投籃平均每個人的進(jìn)球數(shù)是

2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進(jìn)行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某梯形上底長、下底長分別是x,y,高是6,面積是24,則y與x之間的關(guān)系式是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形ABCD中,AB=6,AD=8,P是AD上的動點,PE⊥AC,PF⊥BD于F,則PE+PF的值為

查看答案和解析>>

同步練習(xí)冊答案