分析 (1)四邊形ABCD是正方形,正方形的四個(gè)邊相等且對(duì)邊平行,四個(gè)角都是直角,很容易證明△AME≌△DMF,從而可得出結(jié)論.
(2)設(shè)AE=a時(shí),△EGF的面積為S△EGF,有兩種情況,當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),即x=0時(shí),可求出S△EGF的值,當(dāng)點(diǎn)E不與點(diǎn)A重合時(shí),0<a≤2,根據(jù)條件可證明Rt△AEM∽R(shí)t△NGM,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,可得出函數(shù)式.
解答 解:(1)證明:∵四邊形ABCD是正方形,
∴AB∥CD,∠A=∠MDF,
在△AME和△DMF中,$\left\{\begin{array}{l}{∠AME=∠FMD}\\{AM=DM}\\{∠A=∠MDF}\end{array}\right.$
∴△AME≌△DMF
∴EM=FM;
(2)解:當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),如圖,
a=0,S△EGF=$\frac{1}{2}$AD×MG=$\frac{1}{2}$×2×2=2,
當(dāng)點(diǎn)E不與點(diǎn)A重合時(shí),0<a≤2,
∵EM=FM
在Rt△AME中,AE=a,AM=1,ME=$\sqrt{{a}^{2}+1}$$\sqrt{{a}^{2}+4}$,
∴EF=2ME=2$\sqrt{{a}^{2}+1}$
如圖,
過M作MN⊥BC,垂足為N
則∠MNG=90°∠AMN=90°MN=AB=AD=2AM
∴∠AME+∠EMN=90°
∵EMG=90°
∴∠GMN+∠EMN=90°
∴∠AME=∠GMN
∴Rt△AEM∽R(shí)t△NGM,
∴$\frac{AM}{MN}=\frac{ME}{MG}$
∴MG=2ME=2$\sqrt{{a}^{2}+1}$
∴S△EGF=$\frac{1}{2}$EF×MG=$\frac{1}{2}$×2$\sqrt{{a}^{2}+1}$×2$\sqrt{{a}^{2}+1}$=2a2+2.
∴S△EGF=2a2+2其中0<a≤2,
點(diǎn)評(píng) 本題考查了全等三角形的判定和性質(zhì)定理,相似三角形的判定和性質(zhì)定理,以及全等三角形的判定正方形的性質(zhì)等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年山東省淄博市(五四學(xué)制)六年級(jí)下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:單選題
列語(yǔ)句正確的是( )
A. 在所有連接兩點(diǎn)的線中,直線最短 B. 線段AB是點(diǎn)A和點(diǎn)B之間的距離
C. 延長(zhǎng)射線AB D. 反向延長(zhǎng)線段AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com