【題目】已知:如圖四邊形OACB是菱形,OB在X軸的正半軸上,sin∠AOB=.反比例函數(shù)y=在第一象限圖象經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)F.S△AOF=,則k=( 。
A. 15 B. 13 C. 12 D. 5
【答案】A
【解析】
過(guò)點(diǎn)A作AM⊥x軸于點(diǎn)M,設(shè)OA=a,通過(guò)解直角三角形找出點(diǎn)A的坐標(biāo),再根據(jù)四邊形OACB是菱形、點(diǎn)F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出a的值,進(jìn)而依據(jù)點(diǎn)A的坐標(biāo)得到k的值.
過(guò)點(diǎn)A作AM⊥x軸于點(diǎn)M,如圖所示.
設(shè)OA=a=OB,則,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OAsin∠AOB=a,OM=a,
∴點(diǎn)A的坐標(biāo)為(a,a).
∵四邊形OACB是菱形,S△AOF=,
∴OB×AM=,
即×a×a=39,
解得a=±,而a>0,
∴a=,即A(,6),
∵點(diǎn)A在反比例函數(shù)y=的圖象上,
∴k=×6=15.
故選A.
【解答】
解:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店銷(xiāo)售甲、乙兩種圓規(guī),當(dāng)銷(xiāo)售5只甲種、1只乙種圓規(guī),可獲利潤(rùn)25元,銷(xiāo)售6只甲種、3只乙種圓規(guī),可獲利潤(rùn)39元.
(1)問(wèn)該文具店銷(xiāo)售甲、乙兩種圓規(guī),每只的利潤(rùn)分別是多少元?
(2)在(1)中,文具店共銷(xiāo)售甲、乙兩種圓規(guī)50只,其中甲種圓規(guī)為a只,求文具店所獲得利潤(rùn)P與a的函數(shù)關(guān)系式,并求當(dāng)a≥30時(shí)P的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形PQMN在△ABC內(nèi),點(diǎn)P在AC上,點(diǎn)Q、M在AB上,N在△ABC內(nèi),連接AN并延長(zhǎng)交BC于G,過(guò)G點(diǎn)作GD∥AB交AC于D,過(guò)D、G分別作DE ⊥AB,GF⊥AB,垂足分別為E、F.
(1)求證:DG=GF;
(2)若AB=10,S△ABC=40,試求四邊形DEFG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織甲、乙兩班學(xué)生參加“美化校園”的義務(wù)勞動(dòng).如果甲班做2小時(shí),乙班做3小時(shí),那么可完成全部工作的一半;如果甲班先做2小時(shí)后另有任務(wù),剩下工作由乙班單獨(dú)完成,那么乙班所用的時(shí)間恰好比甲班單獨(dú)完成全部工作的時(shí)間多1小時(shí).問(wèn):甲乙兩班單獨(dú)完成這項(xiàng)工作各需多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某工藝廠設(shè)計(jì)了款成本為元件的工藝品投放市場(chǎng)進(jìn)行試銷(xiāo),經(jīng)過(guò)調(diào)查,得到如下數(shù)據(jù):
銷(xiāo)售單價(jià)(元/件) | ··· | ··· | ||||
每天銷(xiāo)售量(件) | ··· | ··· |
(1)若是的一次函數(shù),求出此函數(shù)的關(guān)系式:
(2)若用(元)表示工藝廠試銷(xiāo)該工藝品每天獲得的利潤(rùn),試求(元)與(元/件)之間的函數(shù)關(guān)系式.
(3)若該工藝品的每天的總成木不能超過(guò)元,那么銷(xiāo)售單價(jià)定為多少元時(shí),工藝廠試銷(xiāo)工藝品每天獲得的利潤(rùn)最大,最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年5月份,某校九年級(jí)學(xué)生參加了南寧市中考體育考試,為了了解該校九年級(jí)(1)班同學(xué)的中考體育情況,對(duì)全班學(xué)生的中考體育成績(jī)進(jìn)行了統(tǒng)計(jì),并繪制以下不完整的頻數(shù)分布表(圖11-1)和扇形統(tǒng)計(jì)圖(圖11-2),根據(jù)圖表中的信息解答下列問(wèn)題:
分組 | 分?jǐn)?shù)段(分) | 頻數(shù) |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |
(1)求全班學(xué)生人數(shù)和的值.
(2)直接學(xué)出該班學(xué)生的中考體育成績(jī)的中位數(shù)落在哪個(gè)分?jǐn)?shù)段.
(3)該班中考體育成績(jī)滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級(jí)進(jìn)行經(jīng)驗(yàn)交流,請(qǐng)用“列表法”或“畫(huà)樹(shù)狀圖法”求出恰好選到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是小區(qū)常見(jiàn)的漫步機(jī),當(dāng)人踩在踏板上,握住扶手,像走路一樣抬腿,就會(huì)帶動(dòng)踏板連桿繞軸旋轉(zhuǎn).如圖2,從側(cè)面看,踏板靜止DE上的線段AB重合,測(cè)得BE長(zhǎng)為0.21m,當(dāng)踏板連桿繞著A旋轉(zhuǎn)到AC處時(shí),測(cè)得∠CAB=42°,點(diǎn)C到地面的距離CF長(zhǎng)為0.52m,當(dāng)踏板連桿繞著點(diǎn)A旋轉(zhuǎn)到AG處∠GAB=30°時(shí),求點(diǎn)G距離地面的高度GH的長(zhǎng).(精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在一次大課間活動(dòng)中,采用了三種活動(dòng)形式:A跑步,B跳繩,C做操,該校學(xué)生都選擇了一種形式參與活動(dòng).
(1)小杰對(duì)同學(xué)們選用的活動(dòng)形式進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,列出了兩幅不完整的統(tǒng)計(jì)圖,利用圖中所提供的信息解決以下問(wèn)題:
①小杰共調(diào)查統(tǒng)計(jì)了 人;②請(qǐng)將圖1補(bǔ)充完整;③圖2中C所占的圓心角的度數(shù)是 ;
(2)假設(shè)被調(diào)查的甲、乙兩名同學(xué)對(duì)這三項(xiàng)活動(dòng)的選擇是等可能的,請(qǐng)你用列表格或畫(huà)樹(shù)狀圖的方法求一下兩人中至少有一個(gè)選擇“A”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】彈簧原長(zhǎng)(不掛重物)15cm,彈簧總長(zhǎng)L(cm)與重物質(zhì)量x(kg)的關(guān)系如下:
彈簧總長(zhǎng)L(cm) | 16 | 17 | 18 | 19 | 20 |
重物質(zhì)量x(kg) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
(1)求L與x之間的函數(shù)關(guān)系;
(2)請(qǐng)估計(jì)重物為5kg時(shí)彈簧總長(zhǎng)L(cm)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com