【題目】如圖,⊙O是△ABC的外接圓,∠ABC=45°,OC∥AD,AD交BC的延長線于D,AB交OC于E.
(1)求證:AD是⊙O的切線;
(2)若⊙O的直徑為6,線段BC=2,求∠BAC的正弦值.
【答案】(1)證明見解析(2)
【解析】
試題(1)連接OA,要證明AD是⊙O的切線即要證明OA⊥AD,由∠ABC=45°可得出∠AOC=90°,由OC∥AD可得出∠OAD=90°,即證明出OA⊥AD;(2)延長CO交圓O于F,連接BF,要求sin∠BAC即要求sin∠F,因為直徑CF,所以∠FBC=90°,所以得出sin∠BAC =sin∠F==.
試題解析:
(1)證明:連接OA,
∵∠ABC=45°,
∴∠AOC=2∠ABC=90°,
∴OA⊥OC,
∵AD∥OC,
∴OA⊥AD,
∴AD是⊙O的切線.
(2)
延長CO交圓O于F,連接BF,
∴∠F=∠BAC,
∵FC為直徑,
∴∠FBC=90°,
∴sin∠BAC=sin∠F==.
科目:初中數(shù)學 來源: 題型:
【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,B. C.E在同一條直線上,連結DC.
(1)請在圖2中找出與△ABE全等的三角形,并給予證明;
(2)證明:DC⊥BE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文化用品商店用元采購一批書包,上市后發(fā)現(xiàn)供不應求,很快銷售完了.商店又去采購第二批同樣款式的書包,進貨單價比第一次高元,商店用了元,所購數(shù)量是第一次的倍.
(1)求第一批采購的書包的單價是多少元?
(2)若商店按售價為每個書包元,銷售完這兩批書包,總共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm, BC=12cm.點P從點C處出發(fā)以1cm/s向A勻速運動,同時點Q從B點出發(fā)以2cm/s向C點勻速移動,若一個點到達目的停止運動時,另一點也隨之停止運動.運動時間為t秒;
(1)用含有t的代數(shù)式表示BQ、CP的長;
(2)寫出t的取值范圍;
(3)用含有t的代數(shù)式 表示Rt△PCQ和四邊形APQB的面積;
(4)當P、Q處在什么位置時,四邊形PQBA的面積最小,并求這個最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2-(2k+3)+k2+3k-4=0.
(1) 試判斷上述方程根的情況并說明理由;
(2) 若以上一元二次方程的兩個根分別為、(),
① m=________,n=_________;
②當時,點A、B分別是直線:y=kx+上兩點且A、B兩點的橫坐標分別為、,直線與軸相交于點C,若S△BOC=2S△AOC,求的值;
(3)在(2)的條件下,問在軸上是否存在點Q,使△ABQ的三個內(nèi)角平分線交點在軸上?若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC=12,AB=CD,BD=15,點E從D點出發(fā),以每秒4個單位的速度沿D→A→D勻速移動,點F從點C出發(fā),以每秒1個單位的速度沿CB向點B作勻速移動,點G從點B出發(fā)沿BD向點D勻速移動,三個點同時出發(fā),當有一個點到達終點時,其余兩點也隨之停止運動,假設移動時間為t秒.
(1)試說明:AD∥BC;
(2)在移動過程中,小明發(fā)現(xiàn)有△DEG與△BFG全等的情況出現(xiàn),請你探究這樣的情況會出現(xiàn)幾次?并分別求出此時的移動時間t和G點的移動距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD在直角坐標系中,邊BC在x軸上,B點坐標為(m,0)且m>0.AB=a,BC=b,且滿足b=.
(1)求a,b的值及用m表示出點D的坐標;
(2)連接OA,AC,若△OAC為等腰三角形,求m的值;
(3)△OAC能為直角三角形嗎?若能,求出m的值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,且EH=EB.下列四個結論:①∠ABC=45°;②AH=BC;③BE+CH=AE;④△AEC是等腰直角三角形.你認為正確的序號是( )
A. ①②③ B. ①③④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方體的長為15,寬為10,高為20,點B離點C的距離為5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是__________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com