【題目】如圖,已知數(shù)軸上點A表示的數(shù)為12 ,點B在點A右邊,且OA2OB.
(1)寫出數(shù)軸上點 B 表示的數(shù);
(2)點 M 為數(shù)軸上一點,若 AM BM 4 ,求出點 M 表示的數(shù).
【答案】(1)6;(2)-1.
【解析】
(1)設B點表示的數(shù)為x,根據(jù)數(shù)軸上兩點間的距離公式建立方程求出其解,就可以求出點B表示的數(shù);
(2)分三種情況討論即可:①M在A的左邊;②M在AB之間;③M在B的右邊.
(1)設B點表示的數(shù)為x,由題意,得:
2x=12
解得:x=6.
故B點表示的數(shù)為6.
(2)設M點表示的數(shù)為x.分三種情況討論:
①M在A的左邊;
-12-x-(6-x)=4
方程無解.
故M不在A的左邊.
②M在AB之間;
x+12-(6-x)=4
解得:x=-1.
③M在B的右邊.
x+12-(x-6)=4
方程無解.
故M不在B的右邊.
綜上所述:M表示的數(shù)為-1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點C(0,1),頂點為Q(2,3),點D在x軸正半軸上,且OD=OC.
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點C逆時針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D,E,AD與BE相交于點F.
(1)求證:△ACD∽△BFD;
(2)當tan∠ABD=1,AC=3時,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓柱的高是,當圓柱的底面半徑由小到大變化時,圓柱的體積也隨之發(fā)生了變化.
(1)在這個變化中,自變量是______,因變量是______;
(2)寫出體積與半徑的關系式;
(3)當?shù)酌姘霃接?/span>變化到時,通過計算說明圓柱的體積增加了多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖
(1)如圖1,學校A,B在道路MN的異側(cè).在MN上建公交站P,使得P到A,B的距離相等。利用尺規(guī)作圖確定P的位置.
(2)如圖2,學校C,D在道路MN的同側(cè),在MN上建公交站Q,使得Q到C,D的距離的和最短.利用網(wǎng)格確定Q的位置.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com