【題目】已知在△ABC中,AB=BC=12cm,∠ABC=90°,點E以每秒1cm/s的速度由A向點B運動,EDAC于點D,點MEC的中點.

1)求證:△BMD為等腰直角三角形.

2)當(dāng)點E運動3秒時,求△BMD的面積.

【答案】1)證明見解析;(2.

【解析】

(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得BM= EC,DM= EC,得出BM=DM,再由等腰三角形的性質(zhì)和三角形的外角性質(zhì)證出∠BMD=90°即可;

(2)由點E運動時間可求BE=12,根據(jù)勾股定理可得EC=15,進而可得BM=,進而可求的面積.

(1)∵∠ABC=90°,MEC中點,

BM= EC=MC,

∴∠MBC=BCM,

DEAC,MEC中點,

DM= EC=MC,

∴∠MDC=MCD,

BM=DM,

AB=BC, ABC=90°

∴∠BCA=45°,

∵∠BME=MBC+BCM=2BCM,

DME=MDC+MCD=2MCD

∴∠BME+DME=2BCM+2MCD=2BCA=90°,

∴∠BMD=90°,

又∵DM=BM,

為等腰直角三角形.

(2) 當(dāng)點E運動3秒時,AE=3×1=3cm,

BE=12-3=9cm,

中,BE=9,BC=12,

EC= =15,

BM=DM= EC= ,

= = .

的面積為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個工廠了解情況,獲得如下信息:

信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC中,AB=2,ADBC,以AD、CD為鄰邊做矩形ADCE,將△ADC繞點D順時針旋轉(zhuǎn)一定的角度得到△A′DC′使點A′落在CE上,連接AA′,CC′.

(1)求AD的長;

(2)求證:△ADA′∽△CDC′;

(3)求CC′2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點P(2,6),B(4,0),若以PB為邊在第一象限內(nèi)作等腰直角三角形△PBC,則點C的坐標(biāo)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩城市為了解決空氣質(zhì)量污染問題,對城市及其周邊的環(huán)境污染進行了綜合治理在治理的過程中,環(huán)保部門每月初對兩城市的空氣質(zhì)量進行監(jiān)測,連續(xù)10個月的空氣污染指數(shù)如圖1所示其中,空氣污染指數(shù)≤50時,空氣質(zhì)量為優(yōu);50<空氣污染指數(shù)≤100時,空氣質(zhì)量為良;100<空氣污染指數(shù)≤150時,空氣質(zhì)量為輕微污染

(1)請?zhí)顚懴卤恚?/span>

平均數(shù)

方差

中位數(shù)

空氣質(zhì)量為優(yōu)的次數(shù)

80

80

1060

(2)請回答下面問題

從平均數(shù)和中位數(shù)來分析,甲,乙兩城市的空氣質(zhì)量

從平均數(shù)和方差來分析,甲,乙兩城市的空氣質(zhì)量情況

根據(jù)折線圖上兩城市的空氣污染指數(shù)的走勢及優(yōu)的情況來分析兩城市治理環(huán)境污染的效果

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB=90°,CB=6,AC=8,DAC上的一點,點EBD上一點.

1)如圖(1),若點DAB的垂直平分線上,求CD的長.

2)如圖(2),連接AE,若AE平分∠BACBE平分∠ABC,求點EAC的距離.

3)若點E到三角形兩邊的距離為1.5,求CD的長.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:

在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)yk1xb1k1≠0)的圖象為直線l1,一次函數(shù)yk2xb2k2≠0)的圖象為直線l2,若k1k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.

解答下面的問題:

1)求過點P1,4)且與已知直線y=-2x1平行的直線的函數(shù)表達式,并畫出直線l的圖象;

2)設(shè)直線l分別與y軸、x軸交于點A、B,如果直線ykxt ( t0)與直線l平行且交x軸于點C,求出△ABC的面積S關(guān)于t的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:CD是經(jīng)過∠BCA頂點C的一條直線,CACB.E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠α.

(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F在射線CD上,如圖1,若∠BCA90°,∠α90°,則BE______CF;并說明理由.

(2)如圖2,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢鲫P(guān)于EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想:__________.并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,DBA=60°,把ABD繞點B逆時針旋轉(zhuǎn)使得點A落在BD上,點A對稱點為點A1,點D對稱點為點D1,A1 D1與BC交于點E,連接D1C.

(1)求證:EC=EA1;

(2)求證:點D1、C、D在同一直線上.

查看答案和解析>>

同步練習(xí)冊答案