在直角△ABC中,∠C=90°,AC=3cm,BC=4cm,以C為圓心,2.5cm為半徑的圓與AB的位置關系是   
【答案】分析:欲求圓與AB的位置關系,關鍵是求出點C到AB的距離d,再與半徑r2.5cm進行比較.若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離.
解答:解:作CD⊥AB于D.
由勾股定理AB==5.
由面積公式得AC•BC=AB•CD,
∴CD===2.4.
∵CD=2.4<2.5,
∴圓與AB的位置關系是相交.
點評:本題考查的是直線與圓的位置關系,解決此類問題可通過比較圓心到直線距離d與圓半徑大小關系完成判定.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D,若AP平分∠BAC交BD于P,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,在直角△ABC中,AD=DE=EB,且CD2+CE2=1,則斜邊AB的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在直角△ABC中,∠C=90°,若AB=5,AC=4,則tan∠B=( 。
A、
3
5
B、
4
5
C、
3
4
D、
4
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角△ABC中,∠C=90°,AB的垂直平分線交AB于D,交AC于F,且BE平分∠ABC,則∠A=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角△ABC中,∠A=90°,BC邊上的垂直平分線交AC于點D;BD平分∠ABC,已知AC=m+2n,BC=2m+2n,則△BDE的周長為
2m+3n
2m+3n
(用含m,n字母表示).

查看答案和解析>>

同步練習冊答案