【題目】如圖,RtABC中,∠C=90°,AD平分∠CAB,DEABE,若AC=6,BC=8.

(1)求BE的長;

(2)求△ACD的周長.

【答案】(1)4 (2)

【解析】

利用角平行線的性質(zhì),可知CD=DE,AE=AC=6,用勾股定理求出AB,再求出BE即可;(2)設CDx,則BD=8-x,在直角三角形中利用勾股定理可列方程x+4=8-x,解得x=3,所以ACD的周長可求出.

解:(1)∵AD平分∠CABDEAB,∠C=90°

AE=AC=6 , CD=DE,在RtABC中,由勾股定理得:AB===10,

BE=4;

2)設CDx,則BD=8-x,在直角三角形中利用勾股定理可列方程x+4=8-x,解得x=3,

CD=3

∴△ACD的周長為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在學校開展的數(shù)學活動課上,小明和小剛制作了一個正三樓錐(質(zhì)量均勻,四個面完全相同),并在各個面上分別標記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;

(1)請用列表或者面樹狀圍的方法表示上述游戲中的所有可能結果.

(2)請分別隸出小明和小剛能贏的概率,并判新游戲的公平性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為規(guī)范學生的在校表現(xiàn),某班實行了操行評分制,根據(jù)學生的操行分高低分為A、B、C、D四個等級.現(xiàn)對該班上學期的操行等級進行了統(tǒng)計,并繪制了不完整的兩種統(tǒng)計圖,請根據(jù)圖象回答問題:

(1)該班的總人數(shù)為_____人,得到等級A的學生人數(shù)在扇形統(tǒng)計圖中的圓心角度數(shù)是_____;

(2)補全條形統(tǒng)計圖;

(3)已知男生小偉和女生小穎的操行等級都是A,且獲得等級A的學生中有2名男生,現(xiàn)班主任打算從操行等級為A的男生和女生中各任意抽取一名作為代表,參加學校的年度表彰大會,請用樹狀圖或列表法求出抽到的代表中有小偉或小穎的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中,,,,動點從點出發(fā),沿著的三條邊逆時針走一圈回到點,速度為2,設運動時間為.

1 時,為等腰三角形?

2)另有一點從點開始,按順時針走一圈回到點,且速度為每秒3cm,若、兩點同時出發(fā),當中有一點到達終點時,另一點也停止運動.為何值時,直線的周長分成相等的兩部分?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘.在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t

(分)之間的關系如圖所示,下列結論:

甲步行的速度為60/分;

乙走完全程用了30分鐘;

乙用16分鐘追上甲;

乙到達終點時,甲離終點還有320

其中正確的結論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,直線y=﹣x﹣1x軸,y軸的交點分別為A、B,以x=﹣1為對稱軸的拋物線y=x2+bx+cx軸分別交于點A、C,直線x=﹣1x軸交于點D.

(1)求拋物線的解析式;

(2)在線段AB上是否存在一點P,使以A,D,P為頂點的三角形與△AOB相似?若存在,求出點P的坐標;如果不存在,請說明理由;

(3)若點Q在第三象限內(nèi),且tan∠AQD=2,線段CQ是否存在最小值,如果存在直接寫出最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠A=72°,BCD=31°CD平分∠ACB

1)求∠B的度數(shù);

2)求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知M1(3,2),N1(5,-1),線段M1N1平移至線段MN處(注:M1與M,N1與N分別為對應點).

(1)若M(-2,5),請直接寫出N點坐標.

(2)在(1)問的條件下,點N在拋物線上,求該拋物線對應的函數(shù)解析式.

(3)在(2)問條件下,若拋物線頂點為B,與y軸交于點A,點E為線段AB中點,點C(0,m)是y軸負半軸上一動點,線段EC與線段BO相交于F,且OC︰OF=2︰,求m的值.

(4)在(3)問條件下,動點P從B點出發(fā),沿x軸正方向勻速運動,點P運動到什么位置時(即BP長為多少),將△ABP沿邊PE折疊,△APE與△PBE重疊部分的面積恰好為此時的△ABP面積的,求此時BP的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,小蘭用尺規(guī)作圖作ABCAC上的高BH,作法如下:

①分別以點DE為圓心,大于DE的一半長為半徑作弧兩弧交于F;

②作射線BF,交邊AC于點H;

③以B為圓心,BK長為半徑作弧,交直線AC于點DE

④取一點K使KBAC的兩側;

所以BH就是所求作的高.其中順序正確的作圖步驟是(  )

A.①②③④B.④③①②C.②④③①D.④③②①

查看答案和解析>>

同步練習冊答案