【題目】某公司對(duì)自家辦公大樓一塊米的正方形墻面進(jìn)行了如圖所示的設(shè)計(jì)裝修(四周陰影部分是八個(gè)全等的矩形,用材料甲裝修;中心區(qū)是正方形,用材料乙裝修). 兩種材料的成本如下表:

材料

價(jià)格(元/2

550

500

設(shè)矩形的較短邊的長(zhǎng)為米,裝修材料的總費(fèi)用為.

1)計(jì)算中心區(qū)的邊的長(zhǎng)(用含的代數(shù)式表示);

2)求關(guān)于的函數(shù)解析式;

3)當(dāng)中心區(qū)的邊長(zhǎng)不小于2米時(shí),預(yù)備材料的購(gòu)買(mǎi)資金32000元夠用嗎?請(qǐng)利用函數(shù)的增減性來(lái)說(shuō)明理由.

【答案】1;(2;(3)預(yù)備材料的購(gòu)買(mǎi)資金32000元不夠用,理由見(jiàn)解析

【解析】

1)根據(jù)圖形邊長(zhǎng)即可表示出MN的長(zhǎng);

2)根據(jù)正方形和長(zhǎng)方形的面積乘以每平方米的單價(jià)即可寫(xiě)出函數(shù)解析式;

3)根據(jù)題意確定x的取值范圍,根據(jù)函數(shù)的增減性即可得結(jié)論.

1)根據(jù)題意,得,

四周陰影部分是八個(gè)全等的矩形,

答:中心區(qū)的邊的長(zhǎng)為

2)根據(jù)題意,得

答:關(guān)于的函數(shù)解析式

3)∵不小于2,

,

,

∴圖象開(kāi)口向下,在對(duì)稱(chēng)軸的左側(cè),的增大而增大,

時(shí),

,

答:預(yù)備材料的購(gòu)買(mǎi)資金32000元不夠用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(理論學(xué)習(xí))學(xué)習(xí)圖形變換中的軸對(duì)稱(chēng)知識(shí)后,我們?nèi)菀自谥本(xiàn)上找到點(diǎn),使的值最小,如圖所示,根據(jù)這一理論知識(shí)解決下列問(wèn)題:

1)(實(shí)踐運(yùn)用)如圖,已知的直徑,弧所對(duì)圓心角的度數(shù)為,點(diǎn)是弧的中點(diǎn),請(qǐng)你在直徑上找一點(diǎn),使的值最小,并求的最小值.

2)(拓展延伸)在圖中的四邊形的對(duì)角線(xiàn)上找一點(diǎn),使.(尺規(guī)作圖,保留作圖痕跡,不必寫(xiě)出作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年下半年豬肉大漲,某養(yǎng)豬專(zhuān)業(yè)戶(hù)想擴(kuò)大養(yǎng)豬場(chǎng)地,但為了節(jié)省材料,利用一面墻(墻足夠長(zhǎng))為一邊,用總長(zhǎng)為120的材料圍成了如圖所示①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等,設(shè)的長(zhǎng)度為),矩形區(qū)域的面積.

1)求之間的函數(shù)表達(dá)式,并注明自變量的取值范圍.

2)當(dāng)為何值時(shí),有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,△AOB的三個(gè)頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別為(3,2)、(1,3).△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90后得到△A1OB1

1)在網(wǎng)格中畫(huà)出△A1OB1,并標(biāo)上字母;

2)點(diǎn)A關(guān)于O點(diǎn)中心對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為

3)點(diǎn)A1的坐標(biāo)為 ;

4)在旋轉(zhuǎn)過(guò)程中,點(diǎn)B經(jīng)過(guò)的路徑為弧BB1,那么弧BB1的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:函數(shù)y=﹣x2+mx+2mm為常數(shù))的圖象不經(jīng)過(guò)第二象限,當(dāng)﹣5x1時(shí),函數(shù)的最大值與最小值之差為12.25,則m的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,上的點(diǎn),若,若平分,則長(zhǎng)為(

A.10B.7C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(為方便答題,可在答題卡上畫(huà)出你認(rèn)為必要的圖形)

Rt△ABC中,∠A=90°,AC=AB=4,DE分別是邊AB,AC的中點(diǎn).若等腰Rt△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到等腰RtRt△AD1E1,設(shè)旋轉(zhuǎn)角為α0α≤180°),記直線(xiàn)BD1CE1的交點(diǎn)為P

1)如圖1,當(dāng)α=90°時(shí),線(xiàn)段BD1的長(zhǎng)等于 ,線(xiàn)段CE1的長(zhǎng)等于 ;(直接填寫(xiě)結(jié)果)

2)如圖2,當(dāng)α=135°時(shí),求證:BD1=CE1 ,且BD1⊥CE1 ;

3)求點(diǎn)PAB所在直線(xiàn)的距離的最大值.(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tanAOD=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四邊形ABCD內(nèi)接于圓O,AC是圓O的直徑,過(guò)點(diǎn)A的切線(xiàn)與CD的延長(zhǎng)線(xiàn)相交于點(diǎn)P.且∠APC=∠BCP.

(1)求證:∠BAC2ACD.

(2)過(guò)圖1中的點(diǎn)DDEACE,交BCG(如圖2)BGGE35,OE5,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案