【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點(diǎn)G在對(duì)角線BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路線為B→A→G→E,小聰?shù)眯凶叩穆肪為B→A→D→E→F.若小敏行走的路程為3100m,則小聰行走的路程為m.

【答案】4600
【解析】解:小敏走的路程為AB+AG+GE=1500+(AG+GE)=3100,
則AG+GE=1600m,
小聰走的路程為BA+AD+DE+EF=3000+(DE+EF).
連接CG,
在正方形ABCD中,∠ADG=∠CDG=45°,AD=CD,
在△ADG和△CDG中,

所以△ADG△CDG,
所以AG=CG.
又因?yàn)镚E⊥CD,GF⊥BC,∠BCD=90°,
所以四邊形GECF是矩形,
所以CG=EF.
又因?yàn)椤螩DG=45°,
所以DE=GE,
所以小聰走的路程為BA+AD+DE+EF=3000+(GE+AG)=3000+1600=4600(m).
所以答案是4600.
【考點(diǎn)精析】關(guān)于本題考查的正方形的性質(zhì),需要了解正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)枇杷20噸,桃子12噸.現(xiàn)計(jì)劃租用甲、乙兩種貨車(chē)共8輛將這批水果運(yùn)回,已知一輛甲種貨車(chē)可裝枇杷4噸和桃子1噸,一輛乙種貨車(chē)可裝枇杷和桃子各2噸.

1)如何安排甲、乙兩種貨車(chē)可一次性地運(yùn)到?有幾種方案?

2)若甲種貨車(chē)每輛要付運(yùn)輸費(fèi)300元,乙種貨車(chē)每輛要付運(yùn)輸費(fèi)240元,則果商場(chǎng)應(yīng)選擇哪種方案,使運(yùn)輸費(fèi)最少?最少運(yùn)費(fèi)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y= (m≠0)交于點(diǎn)A(2,﹣3)和點(diǎn)B(n,2).
(1)求直線與雙曲線的表達(dá)式;
(2)對(duì)于橫、縱坐標(biāo)都是整數(shù)的點(diǎn)給出名稱(chēng)叫整點(diǎn).動(dòng)點(diǎn)P是雙曲線y= (m≠0)上的整點(diǎn),過(guò)點(diǎn)P作垂直于x軸的直線,交直線AB于點(diǎn)Q,當(dāng)點(diǎn)P位于點(diǎn)Q下方時(shí),請(qǐng)直接寫(xiě)出整點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:∠AOC=146°,OD為∠AOC的平分線,∠AOB=90°,BOD的度數(shù)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD的兩條對(duì)稱(chēng)軸為坐標(biāo)軸,點(diǎn)A的坐標(biāo)為(2,1).一張透明紙上畫(huà)有一個(gè)點(diǎn)和一條拋物線,平移透明紙,這個(gè)點(diǎn)與點(diǎn)A重合,此時(shí)拋物線的函數(shù)表達(dá)式為y=x2 , 再次平移透明紙,使這個(gè)點(diǎn)與點(diǎn)C重合,則該拋物線的函數(shù)表達(dá)式變?yōu)椋?)
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題。
(1)計(jì)算: .
(2)解不等式:4x+5≤2(x+1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,BAC=90°,點(diǎn)D是直線AB上的一動(dòng)點(diǎn)(不和A、B重合),BECDE,交直線ACF.

(1)點(diǎn)D在邊AB上時(shí),請(qǐng)證明:BD=AB﹣AF;

(2)試探索:點(diǎn)DAB的延長(zhǎng)線或反向延長(zhǎng)線上時(shí),請(qǐng)?jiān)趥溆脠D中畫(huà)出圖形,(1)中的結(jié)論是否成立?若不成立,請(qǐng)直接寫(xiě)出正確結(jié)論(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知ABCD,AB//x軸,AB=6,點(diǎn)A的坐標(biāo)為(1,-4),點(diǎn)D的坐標(biāo)為(-3,4),點(diǎn)B在第四象限,點(diǎn)P是ABCD邊上的一個(gè)動(dòng)點(diǎn).

(1)若點(diǎn)P在邊BC上,PD=CD,求點(diǎn)P的坐標(biāo).
(2)若點(diǎn)P在邊AB,AD上,點(diǎn)P關(guān)于坐標(biāo)軸對(duì)稱(chēng)的點(diǎn)Q落在直線y=x-1上,求點(diǎn)P的坐標(biāo).
(3)若點(diǎn)P在邊AB,AD,CD上,點(diǎn)G是AD與y軸的交點(diǎn),如圖2,過(guò)點(diǎn)P作y軸的平行線PM,過(guò)點(diǎn)G作x軸的平行線GM,它們相交于點(diǎn)M,將△PGM沿直線PG翻折,當(dāng)點(diǎn)M的對(duì)應(yīng)點(diǎn)落在坐標(biāo)軸上時(shí),求點(diǎn)P的坐標(biāo)(直接寫(xiě)出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,BEGF,∠1=∠3,∠DBC=70°,求∠EDB的大。

閱讀下面的解答過(guò)程,并填空(理由或數(shù)學(xué)式)

解:∵BEGF(已知)

∴∠2=∠3(   )

∵∠1=∠3(   )

∴∠1=(   )(   )

DE∥(   )(   )

∴∠EDB+∠DBC=180°(   )

∴∠EDB=180°﹣∠DBC(等式性質(zhì))

∵∠DBC=(   )(已知)

∴∠EDB=180°﹣70°=110°

查看答案和解析>>

同步練習(xí)冊(cè)答案