【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,

(1)求k的值;

(2)根據(jù)圖象直接寫(xiě)出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;

(3)過(guò)原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).

【答案】(1) k=32 (2) x<﹣8或0<x<8 (3) P(﹣7+3 ,16+);或P(7+3,﹣16+

【解析】分析:(1)先將x=4代入正比例函數(shù)y=2x,可得出y=8,求得點(diǎn)A(4,8),再根據(jù)點(diǎn)AB關(guān)于原點(diǎn)對(duì)稱,得出B點(diǎn)坐標(biāo),即可得出k的值;

(2)正比例函數(shù)的值小于反比例函數(shù)的值即正比例函數(shù)的圖象在反比例函數(shù)的圖象下方,根據(jù)圖形可知在交點(diǎn)的右邊正比例函數(shù)的值小于反比例函數(shù)的值.

(3)由于雙曲線是關(guān)于原點(diǎn)的中心對(duì)稱圖形,因此以A、B、P、Q為頂點(diǎn)的四邊形應(yīng)該是平行四邊形,那么△POA的面積就應(yīng)該是四邊形面積的四分之一即56.可根據(jù)雙曲線的解析式設(shè)出P點(diǎn)的坐標(biāo),然后表示出△POA的面積,由于△POA的面積為56,由此可得出關(guān)于P點(diǎn)橫坐標(biāo)的方程,即可求出P點(diǎn)的坐標(biāo).

詳解:(1)∵點(diǎn)A在正比例函數(shù)y=2x上,

把x=4代入正比例函數(shù)y=2x,

解得y=8,點(diǎn)A(4,8),

把點(diǎn)A(4,8)代入反比例函數(shù)y=,得k=32,

(2)∵點(diǎn)A與B關(guān)于原點(diǎn)對(duì)稱,

B點(diǎn)坐標(biāo)為(﹣4,﹣8),

由交點(diǎn)坐標(biāo),根據(jù)圖象直接寫(xiě)出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍,x<﹣8或0<x<8;

(3)∵反比例函數(shù)圖象是關(guān)于原點(diǎn)O的中心對(duì)稱圖形,

∴OP=OQ,OA=OB,

四邊形APBQ是平行四邊形,

SPOA=S平行四邊形APBQ×=×224=56,

設(shè)點(diǎn)P的橫坐標(biāo)為m(m>0且m≠4),

得P(m, ),

過(guò)點(diǎn)P、A分別做x軸的垂線,垂足為E、F,

點(diǎn)P、A在雙曲線上,

∴SPOE=SAOF=16,

若0<m<4,如圖,

∵SPOE+S梯形PEFA=SPOA+SAOF,

∴S梯形PEFA=SPOA=56.

(8+)(4﹣m)=56.

m1=﹣7+3,m2=﹣7﹣3(舍去),

P(﹣7+3,16+);

若m>4,如圖,

∵SAOF+S梯形AFEP=SAOP+SPOE,

∴S梯形PEFA=SPOA=56.

×(8+)(m﹣4)=56,

解得m1=7+3,m2=7﹣3(舍去),

P(7+3,﹣16+).

點(diǎn)P的坐標(biāo)是P(﹣7+3,16+);或P(7+3,﹣16+).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),已知菱形的邊長(zhǎng)為,點(diǎn)軸負(fù)半軸上,點(diǎn)在坐標(biāo)原點(diǎn)點(diǎn)的坐標(biāo)為,),拋物線頂點(diǎn)在邊上,并經(jīng)過(guò)邊的中點(diǎn).

(1)求這條拋物線的函數(shù)解析式;

(2)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)是,求點(diǎn)到點(diǎn)的最短距離;

(3)如圖(2)將菱形以每秒個(gè)單位長(zhǎng)度的速度沿軸正方向勻速平移,過(guò)點(diǎn)于點(diǎn),交拋物線于點(diǎn),連接.設(shè)菱形平移的時(shí)間為秒(,問(wèn)是否存在這樣的,使相似?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=kx2+(k﹣2)x﹣2(其中k0).

(1)求該拋物線與x軸的交點(diǎn)及頂點(diǎn)的坐標(biāo)(可以用含k的代數(shù)式表示);

(2)若記該拋物線頂點(diǎn)的坐標(biāo)為P(m,n),直接寫(xiě)出|n|的最小值;

3)將該拋物線先向右平移個(gè)單位長(zhǎng)度,再向上平移個(gè)單位長(zhǎng)度,隨著k的變化,平移后的拋物線的頂點(diǎn)都在某個(gè)新函數(shù)的圖象上,求新函數(shù)的解析式(不要求寫(xiě)自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為,且G為線段上一點(diǎn),兩點(diǎn)分別從點(diǎn)沿方向同時(shí)運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)速度為點(diǎn)的運(yùn)動(dòng)速度為,運(yùn)動(dòng)時(shí)間為.

1點(diǎn)對(duì)應(yīng)的數(shù)為 ,點(diǎn)對(duì)應(yīng)的數(shù)為

2)若,試求為多少時(shí),兩點(diǎn)的距離為;

3)若,點(diǎn)為數(shù)軸上任意一點(diǎn),且,請(qǐng)直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知∠ABC=90°,∠CBD=30°,BP平分∠ABD,請(qǐng)補(bǔ)全圖形,并求∠ABP的度數(shù).

2)在(1)的條件下,若∠ABC=α,∠CBD=β,直接寫(xiě)出∠ABP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)(a,b)是一次函數(shù)y=(k-2)x+m與反比例函數(shù)的圖象的交點(diǎn),且a、b是關(guān)于x的一元二次方程的兩個(gè)不相等的實(shí)數(shù)根,其中k為非負(fù)整數(shù),m、n為常數(shù).

(1)求k的值;

(2)求一次函數(shù)與反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,并回答問(wèn)題:

材料:數(shù)學(xué)課上,老師給出了如下問(wèn)題.

如圖1,點(diǎn)ABC均在直線l上,AB = 8BC = 2,MAC的中點(diǎn),求AM的長(zhǎng).

小明的解答過(guò)程如下:

解:如圖2

AB = 8,BC = 2

AC = ABBC = 82 = 6

MAC的中點(diǎn),

).

小芳說(shuō):“小明的解答不完整”.

問(wèn)題:(1)小明解答過(guò)程中的“①”為 ;

2 你同意小芳的說(shuō)法嗎?如果同意,請(qǐng)將小明的解答過(guò)程補(bǔ)充完整;如果不同意,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABBDBEDBDD,ECAC,ACEC,若DE2,AB4,則DB______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】興隆商場(chǎng)用36萬(wàn)元購(gòu)進(jìn)A、B兩種品牌的服裝,銷(xiāo)售完后共獲利6萬(wàn)元,其進(jìn)價(jià)和售價(jià)如下表:

該商場(chǎng)購(gòu)進(jìn)A、B兩種服裝各多少件?

(2)第二次以原價(jià)購(gòu)進(jìn)A、B兩種服裝,購(gòu)進(jìn)B服裝的件數(shù)不變,購(gòu)進(jìn)A服裝的件數(shù)是第一次的2倍,A種服裝按原價(jià)出售,而B(niǎo)種服裝打折銷(xiāo)售;若兩種服裝銷(xiāo)售完畢,要使第二次銷(xiāo)售活動(dòng)獲利不少于81600元,則B種服裝最低打幾折銷(xiāo)售?

查看答案和解析>>

同步練習(xí)冊(cè)答案