閱讀材料:

若一元二次方程ax2+bx+c=0(a≠0)的兩個實根為x1、x2,則兩根與方程系數(shù)之間有如下關(guān)系:x1+x2= -,x1x2= 根據(jù)上述材料解決下列問題:

已知關(guān)于x的一元二次方程x2 = 2(1-m)x-m2 有兩個實數(shù)根:x1,x2.

(1)求m的取值范圍;

(2)設(shè)y = x1 + x2,當y取得最小值時,求相應(yīng)m的值,并求出最小值

 

【答案】

【解析】(1)   ----(4分)

(2)  y=2-2m,當m=0.5時,y最小值=1-----(4分)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面材料:
若設(shè)關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根為x1,x2,那么由根與系數(shù)的關(guān)系得:x1+x2=-
b
a
,x1x2=
c
a
.∵
b
a
=-(x1+x2)
c
a
=x1x2
,∴ax2+bx+c=a(x2+
b
a
x+
c
a
)
=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三項式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)請用上面的方法將多項式4x2+8x-1分解因式.
(2)判斷二次三項式2x2-4x+7在實數(shù)范圍內(nèi)是否能利用上面的方法因式分解,并說明理由.
(3)如果關(guān)于x的二次三項式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,試求出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料,解答問題.
利用圖象法解一元二次不等式:x2+2x-3<0.
解:設(shè)y=x2+2x-3,則y是x的二次函數(shù).∵a=1>0,
∴拋物線開口向上.
又∵當y=0時,x2+2x-3=0,解得x1=1,x2=-3.
∴由此得拋物線y=x2+2x-3的大致圖象如圖所示.
觀察函數(shù)圖象可知:當-3<x<1時,y<0.
∴x2+2x-3<0的解集是:-3<x<1時.
(1)觀察圖象,直接寫出一元二次不等式:x2+2x-3>0的解集是
x<-3或x>1
x<-3或x>1

(2)仿照上例,用圖象法解一元二次不等式:-2x2-4x+6>0.
(3)不等式2x2-4x+6<0有解嗎?若有,求出其解集;若沒有請結(jié)合圖象說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀材料,解答問題.
利用圖象法解一元二次不等式:x2+2x-3<0.
解:設(shè)y=x2+2x-3,則y是x的二次函數(shù).∵a=1>0,
∴拋物線開口向上.
又∵當y=0時,x2+2x-3=0,解得x1=1,x2=-3.
∴由此得拋物線y=x2+2x-3的大致圖象如圖所示.
觀察函數(shù)圖象可知:當-3<x<1時,y<0.
∴x2+2x-3<0的解集是:-3<x<1時.
(1)觀察圖象,直接寫出一元二次不等式:x2+2x-3>0的解集是______.
(2)仿照上例,用圖象法解一元二次不等式:-2x2-4x+6>0.
(3)不等式2x2-4x+6<0有解嗎?若有,求出其解集;若沒有請結(jié)合圖象說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面材料:
若設(shè)關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根為x1,x2,那么由根與系數(shù)的關(guān)系得:x1+x2=-
b
a
,x1x2=
c
a
.∵
b
a
=-(x1+x2)
c
a
=x1x2
,∴ax2+bx+c=a(x2+
b
a
x+
c
a
)
=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三項式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)請用上面的方法將多項式4x2+8x-1分解因式.
(2)判斷二次三項式2x2-4x+7在實數(shù)范圍內(nèi)是否能利用上面的方法因式分解,并說明理由.
(3)如果關(guān)于x的二次三項式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,試求出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:四川省月考題 題型:解答題

閱讀下面材料:若設(shè)關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根為x1,x2
那么由根與系數(shù)的關(guān)系得:x1+x2=﹣,x1x2=

=a[x2﹣(x1+x2)x+x1x2]=a(x﹣x1)(x﹣x2).
于是,二次三項式就可以分解因式ax2+bx+c=a(x﹣x1)(x﹣x2).
(1)請用上面的方法將多項式4x2+8x﹣1分解因式.
(2)判斷二次三項式2x2﹣4x+7在實數(shù)范圍內(nèi)是否能利用上面的方法因式分解,并說明理由.
(3)如果關(guān)于x的二次三項式mx2﹣2(m+1)x+(m+1)(1﹣m)能用上面的方法分解因式,試求出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案