【題目】甲、乙兩同學的家與某科技館的距離均為4000m.甲、乙兩人同時從家出發(fā)去科技館,甲同學先步行800m,然后乘公交車,乙同學騎自行車.已知乙騎自行車的速度是甲步行速度的4倍,公交車的速度是乙騎自行車速度的2倍,結果甲同學比乙同學晚到2.5min.求乙到達科技館時,甲離科技館還有多遠.

【答案】乙到達科技館時,甲離科技館還有1600m

【解析】

設甲步行的速度為x/分,則乙騎自行車的速度為4x/分,公交車的速度是8x/分鐘,根據(jù)題意列方程即可得到結論.

解:(1)設甲步行的速度為x米/分,則乙騎自行車的速度為4x米/分,公交車的速度是8x米/分鐘,

根據(jù)題意得:

解得x80.經(jīng)檢驗,x80是原分式方程的解.

所以2.5×8×801600m

答:乙到達科技館時,甲離科技館還有1600m

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知直線l1l2,直線l3和直線l1、l2交于點CD,在直線l3上有動點P(點P與點C、D不重合),點A在直線l1上,點B在直線l2上.

1)如果點PC、D之間運動時,且滿足∠1+3=∠2,請寫出l1l2之間的位置關系 ;

2)如圖②如果l1l2,點P在直線l1的上方運動時,試猜想∠1+2與∠3之間關系并給予證明;

3)如果l1l2,點P在直線l2的下方運動時,請直接寫出∠PAC、∠PBD、∠APB之間的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A0,8),點B4,0),連接AB,點M,N分別是OAAB的中點,在射線MN上有一動點P.若△ABP是直角三角形,則點P的坐標是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知二次函數(shù).

(1)寫出其頂點坐標為 ,對稱軸為 ;

(2)在右邊平面直角坐標系內(nèi)畫出該函數(shù)圖像;

(3)根據(jù)圖像寫出滿足的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O直徑AB和弦CD相交于點E,AE=2,EB=6,DEB=30°,求弦CD長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一副含30°和45°角的三角板ABC和DEF疊合在一起,邊BC與EF重合,BC=EF=12cm(如圖1),點G為邊BC(EF)的中點,邊FD與AB相交于點H,此時線段BH的長是____.現(xiàn)將三角板DEF繞點G按順時針方向旋轉(如圖2),在∠CGF從0°到60°的變化過程中,點H相應移動的路徑長共為_________.(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在崇仁一中中學生籃球賽中,小方共打了10場球他在第6,7,8,9場比賽中分別得了22,15,12和19分,他的前9場比賽的平均得分y比前5場比賽的平均得分x要高如果他所參加的10場比賽的平均得分超過18分

(1)用含x的代數(shù)式表示y;

(2)小方在前5場比賽中,總分可達到的最大值是多少?

(3)小方在第10場比賽中,得分可達到的最小值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,DBC的中點,且ADAC,DEBC,與AB相交于點E,ECAD相交于點F.過C點作CGAD,交BA的延長線于G,過ABC的平行線交CGH

1)若∠BAC900,求證:四邊形ADCH是菱形;

2)求證:ABC∽△FCD;

3)若DE3,BC8,求FCD的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標為1.

(1)求k、b的值;

(2)若點Dy軸負半軸上,且滿足SCOD=SBOC,求點D的坐標.

查看答案和解析>>

同步練習冊答案