【題目】下列說法正確的個數(shù)是( 。

連接兩點(diǎn)的線中,垂線段最短;

兩條直線相交,有且只有一個交點(diǎn);

若兩條直線有兩個公共點(diǎn),則這兩條直線重合;

若AB+BC=AC,則A、B、C三點(diǎn)共線.

A. 2 B. 3 C. 4 D. 5

【答案】B

【解析】①線段的基本性質(zhì)是:所有連接兩點(diǎn)的線中,線段最短。故本選項(xiàng)錯誤;

②任意兩個點(diǎn)可以通過一條直線連接,所以,兩條直線相交,有且只有一個交點(diǎn),故本選項(xiàng)正確;

③任意兩個點(diǎn)可以通過一條直線連接,若兩條直線有兩個公共點(diǎn),則這兩條直線重合;故本選項(xiàng)正確;

④根據(jù)兩點(diǎn)間的距離知,故本選項(xiàng)正確;

綜上所述,以上說法正確的是②③④共3個。

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了推動課堂教學(xué)改革,打造高效課堂,我市某中學(xué)對該校八年級部分學(xué)生就一學(xué)期以來分組合作學(xué)習(xí)方式的支持程度進(jìn)行調(diào)查,統(tǒng)計情況如圖,請根據(jù)圖中提供的信息,回答下列問題:

1)本次調(diào)查的八年級部分學(xué)生共有______名;請補(bǔ)全條形統(tǒng)計圖;

2)若該校八年級學(xué)生共有540人,請你估計該校八年級有多少名學(xué)生支持分組合作學(xué)習(xí)方式(含非常喜歡喜歡兩種情況的學(xué)生)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司開發(fā)一個新的項(xiàng)目,總投入約11500000000元,11500000000用科學(xué)記數(shù)法表示為_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知3n-2m-1=3m-2n,運(yùn)用等式的性質(zhì),試比較mn的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】25位同學(xué)10秒鐘跳繩的成績匯總?cè)缦卤恚?/span>

人數(shù)

1

2

3

4

5

10

次數(shù)

15

8

25

10

17

20

那么跳繩次數(shù)的中位數(shù)是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】所有有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,反過來,數(shù)軸上所有的點(diǎn)都表示有理數(shù)。________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題提出】已知∠AOB=70°,∠AOD=∠AOC,∠BOD=3∠BOC(∠BOC<45°),求∠BOC的度數(shù).

【問題思考】聰明的小明用分類討論的方法解決.

(1)當(dāng)射線OC在∠AOB的內(nèi)部時,①若射線OD在∠AOC內(nèi)部,如圖1,可求∠BOC的度數(shù),解答過程如下:

設(shè)∠BOC=α,∴∠BOD=3∠BOC=3α,∴∠COD=∠BOD﹣∠BOC=2α,∴∠AOD=∠AOC,

∴∠AOD=∠COD=2α,∴∠AOB=∠AOD+∠BOD=2α+3α=5α=70°,∴α=14°,∴∠BOC=14°

問:當(dāng)射線OC在∠AOB的內(nèi)部時,②若射線OD在∠AOB外部,如圖2,請你求出∠BOC的度數(shù);

【問題延伸】(2)當(dāng)射線OC在∠AOB的外部時,請你畫出圖形,并求∠BOC的度數(shù).

【問題解決】綜上所述:∠BOC的度數(shù)分別是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2為對角線作第一個正方形A1B1C1B2,以B2B3為對角線作第二個正方形A2B2C2B3,以B3B4為對角線作第三個正方形A3B3C3B4,…,如果所作正方形的對角線BnBn+1都在y軸上,且BnBn+1的長度依次增加1個單位,頂點(diǎn)An都在第一象限內(nèi)(n≥1,且n為整數(shù)). 那么A1的坐標(biāo)為____________;An的坐標(biāo)為_________(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(x+k2=x2+2kx+4,則k的值是()
A.﹣2
B.2
C.±2
D.3

查看答案和解析>>

同步練習(xí)冊答案