【題目】如圖,在中,,點(diǎn),,分別在邊,,上,且,,連結(jié),,,
(1)求證:.
(2)判斷的形狀,并說明理由.
(3)若,當(dāng)_______時(shí),.請說明理由.
【答案】(1)見解析;(2)△ABC是等邊三角形,理由見解析;(3),理由見解析
【解析】
(1)根據(jù)等邊對等角可證∠B=∠C,然后利用SAS即可證出結(jié)論;
(2)根據(jù)全等三角形的性質(zhì)可得∠BFD=∠CDE,從而得出∠B=∠1=60°,然后根據(jù)等邊三角形的判定定理即可得出結(jié)論;
(3)作FM⊥BC于M,利用30°所對的直角邊是斜邊的一半即可求出BM,從而求出BD.
(1)證明:∵AB=AC,
∴∠B=∠C,
在△BDF和△CED中,
,
∴△BDF≌△CED(SAS);
(2)解:△ABC是等邊三角形,理由如下:
由(1)得:△BDF≌△CED,
∴∠BFD=∠CDE,
∵∠CDF=∠B+∠BFD=∠1+∠CDE,
∴∠B=∠1=60°,
∵AB=AC,
∴△ABC是等邊三角形
(3)解:當(dāng)時(shí),DF⊥BC,理由如下:
作FM⊥BC于M,如圖所示:
由(2)得:△ABC是等邊三角形,
∴∠B=∠C=60°,
∵FM⊥BC,
∴∠BFM=30°,
∴,
∴,
∵
∴M與D重合,
∴時(shí),DF⊥BC
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點(diǎn)B(2,0),與函數(shù)y=2x的圖象交于點(diǎn)A,則不等式0<kx+b<2x的解集為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動(dòng),分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖, 請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了 人;
(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角為 度;
(3)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校有 1500 名學(xué)生,請估計(jì)喜歡體育類社團(tuán)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場銷售某種冰箱,該種冰箱每臺(tái)進(jìn)價(jià)為2500元.已知原銷售價(jià)為每臺(tái)2900元時(shí),平均每天能售出8臺(tái).若在原銷售價(jià)的基礎(chǔ)上每臺(tái)降價(jià)50元,則平均每天可多售出4臺(tái).設(shè)每臺(tái)冰箱的實(shí)際售價(jià)比原銷售價(jià)降低了x元.
(1)填表(不需化簡):
每天的銷售量/臺(tái) | 每臺(tái)銷售利潤/元 | |
降價(jià)前 | 8 | 400 |
降價(jià)后 |
(2)商場為使這種冰箱平均每天的銷售利潤達(dá)到5000元,則每臺(tái)冰箱的實(shí)際售價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知二次函數(shù).
(1)寫出其頂點(diǎn)坐標(biāo)為 ,對稱軸為 ;
(2)在右邊平面直角坐標(biāo)系內(nèi)畫出該函數(shù)圖像;
(3)根據(jù)圖像寫出滿足的的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與y軸交于點(diǎn)B(0,3),與x軸交于點(diǎn) A.
(1)求拋物線的解析式;
(2)M(m,0)為軸上一動(dòng)點(diǎn),過點(diǎn)M且垂直于軸的直線與直線AB及拋物線分別交于點(diǎn)P,N.
①點(diǎn)M在線段OA上運(yùn)動(dòng),若以B,P,N為頂點(diǎn)的三角形與APM相似,求點(diǎn)M的坐標(biāo);
②點(diǎn)M在軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn)M、P、N中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱M,P,N三點(diǎn)為“共諧點(diǎn)”.請直接寫出使得M,P,N三點(diǎn)成為“共諧點(diǎn)”的 m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副含30°和45°角的三角板ABC和DEF疊合在一起,邊BC與EF重合,BC=EF=12cm(如圖1),點(diǎn)G為邊BC(EF)的中點(diǎn),邊FD與AB相交于點(diǎn)H,此時(shí)線段BH的長是____.現(xiàn)將三角板DEF繞點(diǎn)G按順時(shí)針方向旋轉(zhuǎn)(如圖2),在∠CGF從0°到60°的變化過程中,點(diǎn)H相應(yīng)移動(dòng)的路徑長共為_________.(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一張面積為630cm2的矩形張貼廣告,它的上、下、左、右空白部分的寬度都是2cm.設(shè)印刷部分(矩形)的一邊為xcm,印刷面積為ycm2.
(1)試用x的代數(shù)式表示y;
(2)若印刷面積為442cm2時(shí),求張貼廣告的長和寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點(diǎn),F是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長線于點(diǎn)E,交DC于點(diǎn)N.
(1)求證:△ABM ∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com