精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點,點C的坐標是(8,4),連接AC,BC

(1)求過O,A,C三點的拋物線的解析式,并判斷△ABC的形狀;

(2)動點P從點O出發(fā),沿OB以每秒2個單位長度的速度向點B運動;同時,動點Q從點B出發(fā),沿BC以每秒1個單位長度的速度向點C運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動.設運動時間為t秒,當t為何值時,PA=QA?

(3)在拋物線的對稱軸上,是否存在點M,使以A,B,M為頂點的三角形是等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由

【答案】(1),直角三角形;(2);(3)M1),M2),M3,),M4).

【解析】

試題分析:(1)先確定出點A,B坐標,再用待定系數法求出拋物線解析式;用勾股定理逆定理判斷出△ABC是直角三角形;

(2)根據運動表示出OP=2t,CQ=10﹣t,判斷出Rt△AOP≌Rt△ACQ,得到OP=CQ即可;

(3)分三種情況用平面坐標系內,兩點間的距離公式計算即可

試題解析:(1)∵直線y=﹣2x+10與x軸,y軸相交于A,B兩點,∴A(5,0),B(0,10),∵拋物線過原點,∴設拋物線解析式為,∵拋物線過點B(0,10),C(8,4),∴,∴,∴拋物線解析式為,∵A(5,0),B(0,10),C(8,4),∴==125,==100,==25,∴,∴△ABC是直角三角形.

(2)如圖1,當P,Q運動t秒,即OP=2t,CQ=10﹣t時,由(1)得,AC=OA,∠ACQ=∠AOP=90°,在Rt△AOP和Rt△ACQ中,AC=OA,PA=QA,∴Rt△AOP≌Rt△ACQ,∴OP=CQ,∴2t=10﹣t,∴t=,∴當運動時間為時,PA=QA;

(3)存在,∵,∴拋物線的對稱軸為x=,∵A(5,0),B(0,10),∴AB=

設點M(,m);

①若BM=BA時,∴,∴m1=,m2=,∴M1,),M2,;

②若AM=AB時,∴,∴m3=,m4=,∴M3),M4,

③若MA=MB時,∴,∴m=5,∴M(,5),此時點M恰好是線段AB的中點,構不成三角形,舍去;

∴點M的坐標為:M1,),M2,),M3,),M4

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(2016四川省涼山州)如圖,在邊長為1的正方形網格中,△ABC的頂點均在格點上,點A、B的坐標分別是A(4,3)、B(4,1),把△ABC繞點C逆時針旋轉90°后得到△A1B1C

(1)畫出△A1B1C,直接寫出點A1、B1的坐標;

(2)求在旋轉過程中,△ABC所掃過的面積

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】x=4時,式子5(x+b)﹣10bx+4x的值相等,則b=_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】用反證法證明“平行于同一條直線的兩條直線互相平行”時,先假設_____成立,然后經過推理與平行公理相矛盾.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題背景:

如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數量關系

小吳同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結論:AC+BC=CD

簡單應用:

(1)在圖①中,若AC=,BC=,則CD=

(2)如圖③,AB是⊙O的直徑,點C、D在⊙上,,若AB=13,BC=12,求CD的長

拓展規(guī)律:

(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數式表示)

(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE=AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數量關系是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法不正確的是(  )

A.一組鄰邊相等的矩形是正方形

B.對角線互相垂直的矩形是正方形

C.對角線相等的菱形是正方形

D.有一組鄰邊相等、一個角是直角的四邊形是正方形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】用兩個邊長為a的等邊三角形紙片拼成的四邊形是________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法正確的是(

A.三角形三條角平分線的交點是三角形的重心

B.三角形的一條角平分線把該三角形分成面積相等的兩部分

C.三角形的中線、角平分線、高都是線段

D.三角形的三條高都在三角形內部

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=x2﹣2x+3的頂點坐標是

查看答案和解析>>

同步練習冊答案