【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=15cm,點(diǎn)O在中線CD上,設(shè)OC=xcm,當(dāng)半徑為3cm的⊙O與△ABC的邊相切時(shí),x=

【答案】2 ,3 或6
【解析】解:Rt△ABC中,∠ACB=90°,∠A=30°, ∴∠B=60°,AB=10 ,
∵CD為中線,
∴CD=AD=BD= AB=5 ,
∴∠BDC=∠BCD=∠B=60°,∠ACD=∠A=30°,
∵半徑為3cm的⊙O,
∴DE=3,
①當(dāng)⊙O與AB相切時(shí),
如圖1,

過點(diǎn)O做OE⊥AB于E,
在RT△ODE中,∠BDC=60°,DE=3,
∴sin∠BDC= ,
∴OD= = =2
∴x=OC=CD﹣OD=5 ﹣2 =3 ;
②當(dāng)⊙O與BC相切時(shí),
如圖2,

過O作OE⊥BC,
在RT△OCE中,∠BCD=60°,OE=3,
∴sin∠BCD= ,
∴OC= = =2 cm;
∴x=OC=2 ;
③當(dāng)⊙O與AC相切時(shí),
如圖3,

過O作OE⊥AC于E,
在RT△OCE中,∠ACD=30°,OE=3,
∴sin∠ACD= ,
∴OC= = =6,
∴x=OC=6.
所以答案是2 ,3 或6.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解含30度角的直角三角形的相關(guān)知識,掌握在直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊等于斜邊的一半,以及對切線的性質(zhì)定理的理解,了解切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形紙片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE為折痕,使AB的一部分與BC重合,ABC延長線上的點(diǎn)D重合,則CE的長度為( )

A. 1 B. C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中央政府為了應(yīng)對因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺“延遲退休年齡政策”,為了了解人們對“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研,人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下

年齡

[15,25)

[25,35)

[35,45)

[45,55)

[55,65]

支持“延遲退休”的人數(shù)

15

5

15

28

17


(1)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷是否95%的把握認(rèn)為以45歲為界點(diǎn)的不同人群對“延遲退休年齡政策”的支持有差異;

45歲以下

45歲以上

總計(jì)

支持

不支持

總計(jì)


(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng),現(xiàn)從這8人中隨機(jī)抽2人. ①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率;
②記抽到45歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a≥0,函數(shù)f(x)=(x2﹣2ax)ex
(1)當(dāng)x為何值時(shí),f(x)取得最小值?證明你的結(jié)論;
(2)設(shè)f(x)在[﹣1,1]上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸的正半軸于點(diǎn)A , 點(diǎn)B( ,a)在拋物線上,點(diǎn)C是拋物線對稱軸上的一點(diǎn),連接AB、BC , 以AB、BC為鄰邊作□ABCD , 記點(diǎn)C縱坐標(biāo)為n ,

(1)求a的值及點(diǎn)A的坐標(biāo);
(2)當(dāng)點(diǎn)D恰好落在拋物線上時(shí),求n的值;
(3) 記CD與拋物線的交點(diǎn)為E,連接AE,BE,當(dāng)三角形AEB的面積為7時(shí),n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某水庫養(yǎng)殖魚的有關(guān)情況,從該水庫多個(gè)不同位置捕撈出200條魚,稱得每條魚的質(zhì)量(單位:千克),并將所得數(shù)據(jù)分組,繪制了直方圖
(1)根據(jù)直方圖提供的信息,這組數(shù)據(jù)的中位數(shù)落在范圍內(nèi);
(2)估計(jì)數(shù)據(jù)落在1.00~1.15中的頻率是
(3)將上面捕撈的200條魚分別作一記號后再放回水庫.幾天后再從水庫的多處不同的位置捕撈150條魚,其中帶有記號的魚有10條,請根據(jù)這一情況估算該水庫中魚的總條數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,兩對角線相交于E,且E為對角線BD的中點(diǎn),∠DAE=30°,∠BCE=120°.若CE=1,BC=2,則AC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2 x﹣2(a≠0)的圖像與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知B點(diǎn)坐標(biāo)為(4,0).

(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);
(3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),求△MBC的面積的最大值,并求出此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家今年種植的“紅燈”櫻桃喜獲豐收,采摘上市20天全部銷售完,小明對銷售情況進(jìn)行跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:千克)與上市時(shí)間x(單位:天)的函數(shù)關(guān)系如圖1所示,櫻桃價(jià)格z(單位:元/千克)與上市時(shí)間x(單位:天)的函數(shù)關(guān)系式如圖2所示.

(1)觀察圖象,直接寫出日銷售量的最大值;

(2)求小明家櫻桃的日銷售量y與上市時(shí)間x的函數(shù)解析式;

(3)試比較第10天與第12天的銷售金額哪天多?

查看答案和解析>>

同步練習(xí)冊答案