【題目】如圖,現(xiàn)將平行四邊形ABCD沿其對角線AC折疊,使點B落在點B′處.AB′與CD交于點E.
(1)求證:△AED≌△CEB′;
(2)過點E作EF⊥AC交AB于點F,連接CF,判斷四邊形AECF的形狀并給予證明.
【答案】(1)見解析(2)見解析
【解析】
(1)由題意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS證明全等,則結論可得;
(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根據(jù)等腰三角形的性質(zhì)可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,則可證四邊形AECF是菱形.
證明:(1)∵四邊形ABCD是平行四邊形
∴AD=BC,CD∥AB,∠B=∠D
∵平行四邊形ABCD沿其對角線AC折疊
∴BC=B'C,∠B=∠B'
∴∠D=∠B',AD=B'C且∠DEA=∠B'EC
∴△ADE≌△B'EC
(2)四邊形AECF是菱形
∵△ADE≌△B'EC
∴AE=CE
∵AE=CE,EF⊥AC
∴EF垂直平分AC,∠AEF=∠CEF
∴AF=CF
∵CD∥AB
∴∠CEF=∠EFA且∠AEF=∠CEF
∴∠AEF=∠EFA
∴AF=AE
∴AF=AE=CE=CF
∴四邊形AECF是菱形
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(12,0),O為坐標原點,P是線段OA上任一點(不含端點O、A),二次函數(shù)y1的圖象過P、O兩點,二次函數(shù)y2的圖象過P、A兩點,它們的開口均向下,頂點分別為B、C,射線OB與射線AC相交于點D.則當OD=AD=9時,這兩個二次函數(shù)的最大值之和等于( 。
A. 8 B. 3 C. 2 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠B=60°,BC=3,D為BC邊上的三等分點,BD=2CD,E為AB邊上一動點,將△DBE沿DE折疊到△DB′E的位置,連接AB′,則線段AB′的最小值為:___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行全員賽課比賽,八年級3位數(shù)學老師分別記為A,B,C,(其中A是女老師,B,C是男老師)被安排在星期二下午三節(jié)上,他們通過抽簽決定上課順序。
(1)女老師A不希望上第一節(jié)課,卻偏偏抽到上第一節(jié)課的概率是
(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結果,并求女老師A比男老師B先上課的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象( 記為拋物線) 頂點為M,直線:y=2x-a與x軸,y軸分別交于點A,B.
(1)若拋物線與x軸只有一個公共點,求a的值;
(2)當a>0時,設△ABM的面積為S,求S與a的函數(shù)關系式;
(3)將二次函數(shù)的圖象繞點P(t,-2)旋轉(zhuǎn)180°得到二次函數(shù)的圖象記為拋物線,頂點為N。
①若點N恰好落在直線上,求a 與t 滿足的關系;
②當-2≤x≤1時,旋轉(zhuǎn)前后的兩個二次函數(shù)y的值都會隨x的值得增大而減小,求t 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道不等式的兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變.不等式組是否也具有類似的性質(zhì)呢?請解答下列問題.
(1)完成下列填空:
已知 | 用“<”或“>”填空 |
5+2_____3+1 | |
﹣3﹣1_____﹣5﹣2 | |
1﹣2_____4+1 |
(2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).請你說明上述性質(zhì)的正確性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形紙片中,對角線、交于點,折疊正方形紙片,使落在上,點恰好與上的點重合.展開后,折痕分別交、于點、.連接.下列結論:①;②;③;④四邊形是菱形;⑤.
其中正確結論的序號是( 。
A. ①②③④⑤B. ①②③④C. ①③④⑤D. ①④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,點A到直線BC的距離為d,AB>AC>d,以A為圓心,AC為半徑畫圓弧,圓弧交直線BC于點D,過點D作DE∥AC交直線AB于點E,若BC=4,DE=1,∠EDA=∠ACD,則AD=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一元二次方程x2﹣4x+k=0有兩個不相等的實數(shù)根
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0與x2+mx﹣1=0有一個相同的根,求此時m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com