(2013•濱湖區(qū)一模)無錫地鐵1、2號線即將于2014年通車,為了解市民對地鐵票的定價意向,市物價局向社會公開征集定價意見.現(xiàn)某校課外小組也開展了“你認為無錫地鐵起步價定為多少合適”的問卷調查,征求社區(qū)居民的意見,并將調查結果整理后制成了如下統(tǒng)計圖:

根據(jù)統(tǒng)計圖解答:
(1)同學們一共隨機調查了
300
300
人;
(2)請你把條形統(tǒng)計圖補充完整;
(3)如果在該社區(qū)隨機咨詢一位居民,那么該居民支持“起步價為2元”的概率是
0.4
0.4

(4)假定該社區(qū)有1萬人,請估計該社區(qū)支持“起步價為3元”的居民大約有
3500
3500
人.
分析:(1)由5元的人數(shù)除以所占的百分比,即可求出調查的總人數(shù);
(2)由2元的人數(shù)除以總人數(shù)求出所占的百分比,用單位1減去其他所占的百分比,求出3元所占的百分比,用總人數(shù)乘以3元與4元所占的百分比即可求出相應的人數(shù),補充圖形即可;
(3)根據(jù)2元占的百分比即可求出所求概率;
(4)用10000乘以“起步價為3元”所占的百分比,即可求出相應的人數(shù).
解答:
解:(1)根據(jù)題意得:30÷10%=300(人),
則同學們一共隨機調查了300人;

(2)2元所占的百分比為
120
300
×100%=40%,3元所占的百分比為1-40%-10%-15%=35%,
則3元的人數(shù)為300×35%=105(人),4元的人數(shù)為300×15%=45(人),
補充圖形,如圖所示;

(3)根據(jù)題意得:起步價為2元的概率為40%=0.4;

(4)根據(jù)近題意得:10000×35%=3500(人),
該社區(qū)支持“起步價為3元”的居民大約有3500人.
故答案為:(1)300;(3)0.4;(4)3500.
點評:此題考查了條形統(tǒng)計圖,以及扇形統(tǒng)計圖,解題的關鍵是掌握算所占的百分比的正確的計算方法,以及用樣本估計總體的方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•濱湖區(qū)一模)若拋物線y=x2-x+m與x軸只有一個公共點,則m=
1
4
1
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濱湖區(qū)一模)在5張完全相同的卡片上分別畫上等邊三角形、平行四邊形、等腰梯形、正六邊形和圓. 在看不見圖形的情況下隨機摸出1張,則這張卡片上的圖形是中心對稱圖形的概率是
3
5
3
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濱湖區(qū)一模)已知拋物線y=x2-2ax+a2 (a為常數(shù),a>0),G為該拋物線的頂點.
(1)如圖1,當a=2時,拋物線與y軸交于點M,求△GOM的面積;
(2)如圖2,將拋物線繞頂點G逆時針旋轉90°,所得新圖象與y軸交于A、B兩點(點A在點B的上方),D為x軸的正半軸上一點,以OD為一對角線作平行四邊形OQDE,其中Q點在第一象限.QE交OD于點C,若QO平分∠AQC,AQ=2QC.
①求證:△AQO≌△EQO;
②若QD=OG,試求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濱湖區(qū)一模)Rt△ABC在直角坐標系內的位置如圖1所示,反比例函數(shù)y=
k
x
(k≠0)
在第一象限內的圖象與BC邊交于點D(4,m),與直線AB:y=
1
2
x+b交于點E(2,n).
(1)m=
1
2
n
1
2
n
,點B的縱坐標為
n+1
n+1
;(用含n的代數(shù)式表示);
(2)若△BDE的面積為2,設直線AB與y軸交于點F,問:在射線FD上,是否存在異于點D的點P,使得以P、B、F為頂點的三角形與△ABC相似?若存在,請求出點P的坐標;若不存在,請說明理由.
(3)在(2)的條件下,現(xiàn)有一動點M,從O點出發(fā),沿x軸的正方向,以每秒2個單位的速度運動,設運動時間為t(s),問:是否存在這樣的t,使得在直線AB上,有且只有一點N,滿足∠MNC=45°?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案