【題目】騎自行車旅行越來越受到人們的喜愛,各種品牌的山地自行車相繼投放市場,順風(fēng)車行經(jīng)營的型車去年6月份銷售總額為3.2萬元,今年經(jīng)過改造升級后型車每輛銷售價比去年增加400元,若今年6月份與去年6月份賣出的型車數(shù)量相同,則今年6月份型車銷售總額將比去年6月份銷售總額增加

,兩種型號車的進(jìn)貨和銷售價格表:

型車

型車

進(jìn)貨價格(元輛)

1100

1400

銷售價格(元輛)

今年的銷售價格

2400

1)求今年6月份型車每輛銷售價多少元;

2)該車行計劃7月份新進(jìn)一批型車和型車共50輛,且型車的進(jìn)貨數(shù)量不超過型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多?

【答案】12000元;(2型車17輛,型車33

【解析】

1)設(shè)去年6月份型車每輛銷售價元,那么今年6月份型車每輛銷售元,根據(jù)銷售總額和每輛銷售價列出方程,即可解決問題.

2)設(shè)今年7月份進(jìn)型車輛,則型車輛,獲得的總利潤為元,先求出的范圍,構(gòu)建一次函數(shù),利用函數(shù)性質(zhì)解決問題.

解:(1)設(shè)去年6月份型車每輛銷售價元,那么今年6月份型車每輛銷售元,

根據(jù)題意得,

解得:,

經(jīng)檢驗,是方程的解.

時,

答:今年6月份型車每輛銷售價2000元.

2)設(shè)今年7月份進(jìn)型車輛,則型車輛,獲得的總利潤為元,

根據(jù)題意得

解得:,

,

的增大而減小,

當(dāng)時,可以獲得最大利潤.

答:進(jìn)貨方案是型車17輛,型車33輛.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)C∠AOB的平分線上一點(diǎn),點(diǎn)PP′分別在邊OA、OB上.如果要得到 OP=OP′,需要添加以下條件中的某一個即可,請你寫出所有可能的結(jié)果的序號為(

①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C④PP′⊥OC

A.①②B.④③C.①④③D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為100海里的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東37°方向上的B處,求此時輪船所在的B處與燈塔P的距離(sin53°=0.8,sin37°=0.6,tan53°=1.3,結(jié)果精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明準(zhǔn)備進(jìn)行如下操作實驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.

(1)要使這兩個正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認(rèn)為這兩個正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說法正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點(diǎn)C處測得樹頂B的仰角為 60°,然后在坡頂D測得樹頂B的仰角為300,已知斜坡CD的長度為20m,DE的長為10m,則樹AB的高度是( ) m

A. B. 30 C. D. 40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與拋物線交于點(diǎn)A,B,點(diǎn)A軸上,點(diǎn)B軸上.

1)求該拋物線的解析式.

2)點(diǎn)P是直線AB上方的拋物線上的一動點(diǎn),若SAOBSPAB83,求此時點(diǎn)P的坐標(biāo).

3)點(diǎn)E是拋物線對稱軸上的動點(diǎn),點(diǎn)F是拋物線上的點(diǎn),判斷有幾個位置能夠使得點(diǎn)E,FB,O為頂點(diǎn)的四邊形是平行四邊形,直接寫出相應(yīng)的點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DC是⊙O的直徑,點(diǎn)B在圓上,直線ABCD延長線于點(diǎn)A,且∠ABD=C

1)求證:AB是⊙O的切線;

2)若AB=4cmAD=2cm,求tanA的值和DB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0)

(1)求拋物線的解析式和對稱軸;

(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使△PAB的周長最小?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(3)該拋物線有一點(diǎn)Dxy),使得SABCSDBC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸于點(diǎn),交軸于點(diǎn),點(diǎn)是射線上一動點(diǎn)(點(diǎn)不與點(diǎn),重合),過點(diǎn)垂直于軸,交直線于點(diǎn),以直線為對稱軸,將翻折,點(diǎn)的對稱點(diǎn)落在軸上,以,為鄰邊作平行四邊形.設(shè)點(diǎn),重疊部分的面積為

1的長是__________,的長是___________(用含的式子表示);

2)求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案