如圖,在四邊形ABCD中,AD∥BC,點O在AD上,BO、CO分別平分∠ABC、∠DCB,若∠A+∠D=208°,求∠OBC+∠OCB的度數(shù)。請你將解答過程補充完整。

 

【答案】

76°

【解析】

試題分析:根據(jù)平行線的性質可得∠A+∠ABC=180°,∠D+∠DCB=180°,再根據(jù)角平分線的性質可得∠ABC=2∠OBC,∠DCB=2∠OCB,根據(jù)四邊形的內(nèi)角和定理可得∠A+∠D+2(∠OBC+∠OCB)=360°,然后結合∠A+∠D=208°即可求得結果.

解:∵AD∥BC

∴∠A+∠ABC=180°,∠D+∠DCB=180°

∵BO、CO分別平分∠ABC、∠DCB

∴∠ABC=2∠OBC,∠DCB=2∠OCB

∴∠A+∠D+2(∠OBC+∠OCB)=360°

∵∠A+∠D=208°

∴∠OBC+∠OCB=76°.

考點:平行線的性質,角平分線的性質

點評:平行線的判定和性質是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結AD、AE、CD,則下列結論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案