【題目】如圖,拋物線y=x2﹣(m+2)x+3(m﹣1)與x軸的兩個(gè)交點(diǎn)為A、B,與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),直線y=﹣2x+m+6經(jīng)過(guò)點(diǎn)B,交y軸于點(diǎn)E(0,6).
(1)求直線和拋物線的解析式;
(2)如果拋物線的對(duì)稱(chēng)軸與線段BC交于點(diǎn)H,且直線y=x與直線y=﹣2x+m+6交于點(diǎn)G,求證:四邊形OHBG是平行四邊形;
(3)在拋物線上是否存在點(diǎn)P,使△APB的面積等于平行四邊形OHBG的面積,若存在,直接寫(xiě)出P點(diǎn)的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
【答案】(1)y=x2-2x-3;(2)證明見(jiàn)解析(3)存在滿(mǎn)足條件的點(diǎn)p,點(diǎn)p的坐標(biāo)是(0,-3)或(2,-3)或(1+,3)
【解析】試題分析:(1)根據(jù)待定系數(shù)法,可求得答案;
(2)根據(jù)直線的一次項(xiàng)的系數(shù)相等,可得平行線,根據(jù)平行四邊形的定義可得結(jié)果;
(3)根據(jù)面積相等,可得關(guān)于x的方程,根據(jù)解方程,可得點(diǎn)的坐標(biāo).
試題解析:(1)將點(diǎn)E(0,6)代入直線y=-2x+m+6得
M+6=6,則m=0,∴直線的解析式為y=-2x+6,
拋物線的解析式為y=x2-2x-3;
(2)∵y=x2-2x-3=(x+1)(x-3)=(x-1)2-4
∴B(3,0),C(0,-3),D(1,-4),對(duì)稱(chēng)軸為x=1
設(shè)直線BC的解析式為y=kx-3
則3k-3=0,即k=1,∴直線BC的解析式為y=x-3
則BC∥OG,點(diǎn)H的坐標(biāo)為(1,-2)
設(shè)直線OH的解析式為y=ax,則a=-2,∴直線OH的解析式為y=-2x,
∴OH∥BG,∴四邊形OHBG是平行四邊形;
(3)存在滿(mǎn)足條件的點(diǎn)p,點(diǎn)p的坐標(biāo)是(0,-3)或(2,-3)或(1+,3)
∵OB=3,△OBH的OB邊上的高為2,
∴平行四邊形的面積=2xx3x2=6
設(shè)點(diǎn)P的坐標(biāo)為(x,x2-2x-3)
∵AB=4,∴×4|x2-2x-3|=6,解得x=1±或x=0或x=2
∴P的坐標(biāo)為(0,-3)或(2,-3)或(1-,3)或(1+,3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中是假命題的是( )
A. 平面內(nèi),垂直于同一條直線的兩條直線平行;
B. 同旁?xún)?nèi)角互補(bǔ);
C. 等角的余角相等;
D. 互為補(bǔ)角的兩個(gè)角不都是銳角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以為直徑的⊙分別交、于點(diǎn)、,點(diǎn)在的延長(zhǎng)線上,且.
()求證:直線是⊙的切線.
()若,,求點(diǎn)到的距離.
()在第()的條件下,求的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB交x軸于點(diǎn)A(4,0),交y軸于點(diǎn)B,交反比例函數(shù)y=(k≠0)于點(diǎn)P(第一象限),若點(diǎn)P的縱坐標(biāo)為2,且tan∠BAO=1
(1)求出反比例函數(shù)y=(k≠0)的解析式;
(2)過(guò)線段AB上一點(diǎn)C作x軸的垂線,交反比例函數(shù)y=(k≠0)于點(diǎn)D,連接PD,當(dāng)△CDP為等腰三角形時(shí),求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.2x+3y=5xy
B.a3﹣a2=a
C.a﹣(a﹣b)=﹣b
D.(a﹣1)(a+2)=a2+a﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,以△ABC的邊AB為直徑的⊙O交邊BC于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線交AC于點(diǎn)D,且ED⊥AC.
(1)試判斷△ABC的形狀,并說(shuō)明理由;
(2)如圖2,若線段AB、DE的延長(zhǎng)線交于點(diǎn)F,∠C=75°,CD=,求⊙O的半徑和BF的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形中,既是中心對(duì)稱(chēng)又是軸對(duì)稱(chēng)圖形的是( )
A.等邊三角形
B.平行四邊形
C.梯形
D.矩形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com