【題目】如圖,ABO的直徑,CDO的切線,切點為D,CDAB的延長線交于點C,∠A30°,給出下面3個結(jié)論:ADCDBDBC;AB2BC,其中正確結(jié)論的個數(shù)( )

A. 3 B. 2 C. 1 D. 0

【答案】A

【解析】試題分析:連接ODCD⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結(jié)合在直角三角形中300所對的直角邊等于斜邊的一半,繼而得到結(jié)論①②③成立.

解:如圖,連接OD,

∵CD⊙O的切線,

∴CD⊥OD,

∴∠ODC=90°,

∵∠A=30°,

∴∠ABD=60°,

∴△OBD是等邊三角形,

∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD

∴∠C=∠BDC=30°

∴BD=BC,成立;

∴AB=2BC,成立;

∴∠A=∠C,

∴DA=DC,成立;

綜上所述,①②③均成立,

故答案選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三家超市為促銷一種定價相同的商品,甲超市先降價20%,后又降價10%;乙超市連續(xù)兩次降價15%;丙超市一次降價30%.則顧客到哪家超市購買這種商品更合算( )

A. B. C. D. 一樣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次三項式x2mx+16是一個完全平方式,則字母m的值是( )

A. 4B. 4C. ±4D. ±8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、2、3、45這五個數(shù)中,先任意取一個數(shù)a,然后在余下的數(shù)中任意取出一個數(shù)b,組成一個點(a,b).求組成的點(ab)恰好橫坐標為偶數(shù)且縱坐標為奇數(shù)的概率.(請用“畫樹狀圖”或“列表”等方法寫出分析過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°AC=2△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是 ( 。

A. B. 2 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形AOCB的邊長為4,反比例函數(shù)的圖象過點E34).

(1)求反比例函數(shù)的解析式;

(2)反比例函數(shù)的圖象與線段BC交于點D,直線y= x+b過點D,與線段AB相交于點F,求點F的坐標;

(3)連接OF、OE,探究AOFEOC的數(shù)量關(guān)系,并證明;

(4)若點Px軸上的動點,點Q是(1)中的反比例函數(shù)在第一象限圖象上的動點,且使得PDQ是以PQ為斜邊的等腰直角三角形,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結(jié)果精確到0.1米, ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實陽光體育工程,某校計劃購買m個籃球和n個排球.已知籃球每個80元,排球每個60.購買這些籃球和排球的總費用為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P(a+2,a-1)y軸上則點P的坐標是____.

查看答案和解析>>

同步練習(xí)冊答案