【題目】如圖,△ABC是等邊三角形,平面上的動點P滿足PC⊥AB,記∠APB=α.
(1)如圖1,當點P在直線BC上方時,直接寫出∠PAC的大。ㄓ煤α的代數(shù)式表示);
(2)過點B作BC的垂線BD,同時作∠PAD=60°,射線AD與直線BD交于點D.
①如圖2,判斷△ADP的形狀,并給出證明;
②連結(jié)CD,若在點P的運動過程中,CD=AB.直接寫出此時α的值.
【答案】(1)150°﹣;(2)①△ADP是等邊三角形,證明見解析;②α=150°或α=30°.
【解析】
(1)由等邊三角形的性質(zhì)可得∠CAB=∠CBA=60°,AC=CB=AB,可證PA=PB,由等腰三角形的性質(zhì)可得∠PAB=∠PBA=90°,即可求解;
(2)①由“SAS”可證△DAB≌△PAC,可得AD=AP,由等邊三角形的判定△ADP是等邊三角形;
②分點P在直線AB上方和直線AB下方兩種情況討論,由全等三角形的性質(zhì)和等腰三角形的性質(zhì)可求解.
解:(1)∵△ABC是等邊三角形,
∴∠CAB=∠CBA=60°,AC=CB=AB,且PC⊥AB,
∴PC垂直平分AB,
∴PA=PB,且∠APB=α,PC⊥AB,
∴∠APC=∠BPC=α,
∴∠PAB=∠PBA=90°﹣,
∴∠PAC=∠PAB+∠BAC=150°﹣;
(2)①△ADP是等邊三角形,
理由如下:∵∠PAD=60°=∠CAB,
∴∠DAB=∠PAC,
∵△ABC是等邊三角形,CP⊥AB,
∴∠ACP=∠BCP=30°,
∵DB⊥BC,∠ABC=60°
∴∠DBA=30°=∠ACP,且AC=AB,∠DAB=∠PAC,
∴△DAB≌△PAC(ASA)
∴AD=AP,且∠DAP=60°,
∴△ADP是等邊三角形;
②如圖3,點P在AB上方時,
∵CD=AB.
∴CD=BC,
∵∠DBC=90°,
∴CD2=DB2+BC2,
∴BC=DB,
∴AB=DB,且∠DBA=30°,
∴∠ADB=75°,
∵△DAB≌△PAC,
∴∠APC=∠ADB=75°,
∴α=150°;
如圖4,點P在AB下方時,
∵DB⊥BC,∠ABC=60°
∴∠ABD=150°
∵CD=AB.
∴CD=BC,
∵∠DBC=90°,
∴CD2=DB2+BC2,
∴BC=DB,
∴AB=DB,且∠ABD=150°,
∴∠ADB=15°,
∵∠PAD=60°=∠CAB,
∴∠DAB=∠PAC,
∵△ABC是等邊三角形,CP⊥AB,
∴∠ACP=∠BCP=180°﹣30°=150°,
∴∠DBA=150°=∠ACP,且AC=AB,∠DAB=∠PAC,
∴△DAB≌△PAC(SAS)
∴∠APC=∠ADB=15°,
∴α=30°,
科目:初中數(shù)學 來源: 題型:
【題目】為了落實國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,∠BAD=60°,AC=12,E是線段AD延長線上一點,過點A,C,E作直角三角形,則AE的長度是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在初中階段的函數(shù)學習中,我們經(jīng)歷了“確定函數(shù)的表達式——利用函數(shù)圖象研其性質(zhì)——運用函數(shù)解決問題”的學習過程.如圖,在平面直角坐標系中己經(jīng)繪制了一條直線.另一函數(shù)與的函數(shù)關(guān)系如下表:
… | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … | |
… | -2 | -0.25 | 1 | 1.75 | 2 | 1.75 | 1 | -0.25 | -2 | -4.25 | -7 | -10.25 | -14 | … |
(1)求直線的解析式;
(2)請根據(jù)列表中的數(shù)據(jù),繪制出函數(shù)的近似圖像;
(3)請根據(jù)所學知識并結(jié)合上述信息擬合出函數(shù)的解折式,并求出與的交點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D是等邊三角形ABC的邊BC上一點,以AD為邊作等邊△ADE,連接CE.
(1)求證:;
(2)若∠BAD=20°,求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點O,使OB=OC,以O(shè)為圓心,OB為半徑作圓,過C作CD∥AB交⊙O于點D,連接BD.
(1)猜想AC與⊙O的位置關(guān)系,并證明你的猜想;
(2)已知AC=6,求扇形OBC圍成的圓錐的底面圓半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖像經(jīng)過點(1,0).
(1)當,時,求二次函數(shù)的解析式及二次函數(shù)最小值;
(2)二次函數(shù)的圖像經(jīng)過點(,),(,).若對任意實數(shù),函數(shù)值都不小于,求此時二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=6,AD=8,點E是邊AD上一點,EM⊥BC交AB于點M,點N在射線MB上,且AE是AM和AN的比例中項.
(1)如圖1,求證:∠ANE=∠DCE;
(2)如圖2,當點N在線段MB之間,聯(lián)結(jié)AC,且AC與NE互相垂直,求MN的長;
(3)連接AC,如果△AEC與以點E、M、N為頂點所組成的三角形相似,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.求作⊙O,使得點O在邊AB上,且⊙O經(jīng)過B、D兩點;并證明AC與⊙O相切.(尺規(guī)作圖,保留作圖痕跡,不寫作法)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com