已知在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2x經(jīng)過(guò)點(diǎn)A(4,0),頂點(diǎn)為B.
(1)求頂點(diǎn)B的坐標(biāo);
(2)將這條拋物線向左平移后與y軸相交于點(diǎn)C,此時(shí)點(diǎn)A移動(dòng)到點(diǎn)D的位置,且∠DBA=∠CBO,求平移后拋物線的表達(dá)式.
(1)∵拋物線y=ax2+2x經(jīng)過(guò)點(diǎn)A(4,0),
∴0=16a+8.
∴a=-
1
2
,
∴拋物線的表達(dá)式為y=-
1
2
x2+2x,
∴y=-
1
2
x2+2x=-
1
2
(x2-4x+22-4)=-
1
2
(x-2)2+2.
頂點(diǎn)B的坐標(biāo)為(2,2);

(2)解法一:設(shè)平移后拋物線的表達(dá)式為y=-
1
2
x2+bx+c.
∵點(diǎn)B的坐標(biāo)為(2,2),
∴AB=OB=2
2
,∠BAD=∠BOC=45°.
又∵∠DBA=∠CBO,
∴△ABD≌△OBC.
∴AD=OC,即平移的距離為c.
∴點(diǎn)D的坐標(biāo)為(4-c,0).
∴0=-
1
2
(4-c)2+b(4-c)+c.
又∵平移后拋物線的對(duì)稱軸為x=b.
∴b=2-c.
∴0=-
1
2
(4-c)2+(2-c)(4-c)+c..
解得c=2或c=0(不符合題意,舍去).
∴平移后拋物線的表達(dá)式為y=-
1
2
x2+2.
解法二:∵原拋物線表達(dá)式為y=-
1
2
x(x-4),
∴設(shè)平移后拋物線表達(dá)式為y=-
1
2
(x+m)(x-4+m)(m>0,向左平移的距離).
即y=-
1
2
x2-(m-2)x-
1
2
m2+2m.
∵B的坐標(biāo)為(2,2),
∵AB=OB=2
2
,∠BAD=∠BOC=45°,
又∵∠DBA=∠CBO,
∴△ABD≌△OBC.
∴AD=OC,即m=-
1
2
m2+2m.解得m=2或m=0(不符合題意,舍去).
∴平移后拋物線的表達(dá)式為:y=-
1
2
x2+2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點(diǎn),交y軸正半軸于點(diǎn)C,且x12+x22=10.
(1)求此二次函數(shù)的解析式;
(2)是否存在過(guò)點(diǎn)D(0,-
5
2
)的直線與拋物線交于點(diǎn)M、N,與x軸交于點(diǎn)E,使得點(diǎn)M、N關(guān)于點(diǎn)E對(duì)稱?若存在,求直線MN的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),拋物線y=ax2+bx+c經(jīng)過(guò)A,B,C三點(diǎn),頂點(diǎn)為F.
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)求拋物線的解析式及頂點(diǎn)F的坐標(biāo);
(3)已知M為拋物線上一動(dòng)點(diǎn)(不與C點(diǎn)重合),試探究:
①使得以A,B,M為頂點(diǎn)的三角形面積與△ABC的面積相等,求所有符合條件的點(diǎn)M的坐標(biāo);
②若探究①中的M點(diǎn)位于第四象限,連接M點(diǎn)與拋物線頂點(diǎn)F,試判斷直線MF與⊙E的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=-1,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中A(-3,0),C(0,-2)
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)已知在對(duì)稱軸上存在一點(diǎn)P,使得△PBC的周長(zhǎng)最。(qǐng)求出點(diǎn)P的坐標(biāo);
(3)若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過(guò)點(diǎn)D作DEPC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長(zhǎng)為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說(shuō)明S是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,以點(diǎn)A(3,0)為圓心,以5為半徑的圓與x軸相交于點(diǎn)B、C,與y軸相交于點(diǎn)D、E.
(1)若拋物線y=
1
4
x2+bx+c
經(jīng)過(guò)C、D兩點(diǎn),求此拋物線的解析式并判斷點(diǎn)B是否在此拋物線上.
(2)若在(1)中的拋物線的對(duì)稱軸有一點(diǎn)P,使得△PBD的周長(zhǎng)最短,求點(diǎn)P的坐標(biāo).
(3)若點(diǎn)M為(1)中拋物線上一點(diǎn),點(diǎn)N為其對(duì)稱軸上一點(diǎn),是否存在以點(diǎn)B、C、M、N為頂點(diǎn)的平行四邊形?若存在,直接寫(xiě)出點(diǎn)M、N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=
8
2
5
x2+bx+c經(jīng)過(guò)點(diǎn)A(
3
2
,0)和點(diǎn)B(1,2
2
),與x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D在對(duì)稱軸的右側(cè),x軸上方的拋物線上,且∠BDA=∠DAC,求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,連接BD,交拋物線對(duì)稱軸于點(diǎn)E,連接AE.
①判斷四邊形OAEB的形狀,并說(shuō)明理由;
②點(diǎn)F是OB的中點(diǎn),點(diǎn)M是直線BD的一個(gè)動(dòng)點(diǎn),且點(diǎn)M與點(diǎn)B不重合,當(dāng)∠BMF=
1
3
∠MFO時(shí),請(qǐng)直接寫(xiě)出線段BM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用12m長(zhǎng)的柵欄圍成一個(gè)中間被隔斷的鴨舍(柵欄占地面積忽略不計(jì)).

(1)如圖1,當(dāng)AB=______m,BC=______m時(shí),所圍成兩間鴨舍的面積最大,最大值為_(kāi)_____m2;
(2)如圖2,若現(xiàn)有一面長(zhǎng)4m的墻可以利用,其余三方及隔斷使用柵欄,所圍成兩間鴨舍面積和的最大值是多少______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商店購(gòu)買一批單價(jià)為20元的日用品,如果以單價(jià)30元銷售,那么半月內(nèi)可以售出400件.據(jù)銷售經(jīng)驗(yàn),提高銷售單價(jià)會(huì)導(dǎo)致銷售量的減少,即銷售單價(jià)每提高一元,銷售量相應(yīng)減少20件.如何提高銷售價(jià),才能在半月內(nèi)獲得最大利潤(rùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:
(1)寫(xiě)出方程ax2+bx+c=0的兩個(gè)根;
(2)當(dāng)x為何值時(shí),y>0;y<0?
(3)寫(xiě)出y隨x的增大而減小的自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案