【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①;②△DFP△BPH;③; ④.其中正確的是______.(寫出所有正確結(jié)論的序號(hào)).
【答案】②③
【解析】
依據(jù)∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH,,判定△DPH∽△CPD,可得,即PD2=PHCP,再根據(jù)CP=CD,即可得出PD2=PHCD;根據(jù)三角形面積計(jì)算公式,結(jié)合圖形得到△BPD的面積=△BCP的面積+△CDP面積-△BCD的面積,即可得出
解:∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH,故②正確;
∴
故①不正確;
∵PC=DC,∠DCP=30°,
∴∠CDP=75°,
又∵∠DHP=∠DCH+∠CDH=75°,
∴∠DHP=∠CDP,而∠DPH=∠CPD,
∴△DPH∽△CPD,
∴ ,即PD2=PHCP,
又∵CP=CD,
∴PD2=PHCD,故③正確;
如圖,過(guò)P作PM⊥CD,PN⊥BC,
設(shè)正方形ABCD的邊長(zhǎng)是4,△BPC為正三角形,則正方形ABCD的面積為16,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,
∴∠PCD=30°
故④錯(cuò)誤;
故答案為:②③
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,,,軸,如圖1,,且.
(1)點(diǎn)坐標(biāo)為__________,點(diǎn)坐標(biāo)為__________;
(2)求過(guò)、、三點(diǎn)的拋物線表達(dá)式;
(3)如圖2,拋物線對(duì)稱軸與交于點(diǎn),現(xiàn)有一點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位的速度在上向點(diǎn)運(yùn)動(dòng),另一點(diǎn)從點(diǎn)與點(diǎn)同時(shí)出發(fā),以每秒5個(gè)單位在拋物線對(duì)稱軸上運(yùn)動(dòng).當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn)、同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)、運(yùn)動(dòng)到何處時(shí),面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家衛(wèi)生健康委員會(huì)公布,截止4月2日全國(guó)疫情現(xiàn)存趨勢(shì)圖如下:
(1)結(jié)合圖象,小彤對(duì)全國(guó)疫情做出以下四個(gè)判斷:
①現(xiàn)存疑似病例與現(xiàn)存確診病例數(shù)量差距最大日期大約出現(xiàn)在2月上旬;
②疫情在3月30日已經(jīng)得到完全的控制;
③現(xiàn)存疑似人數(shù)大約在2月8日前后達(dá)到峰值;
④全國(guó)現(xiàn)存確診病例人數(shù)3月底增加趨緩.
你認(rèn)為判斷正確的有________.
(2)針對(duì)這次疫情,某校初三一班的同學(xué)以小組為單位組織了“抗戰(zhàn)疫情,我為湖北鼓勁”繪畫(huà)活動(dòng).通過(guò)網(wǎng)絡(luò)發(fā)往湖北,右圖是同學(xué)們的上交繪畫(huà)作品情況,結(jié)合統(tǒng)計(jì)圖,回答:________,________.
(3)全國(guó)各地都向湖北伸出援助之手,其中北京市派遣醫(yī)務(wù)人員前往較為嚴(yán)重的武漢和黃岡.請(qǐng)依據(jù)表格回答下列問(wèn)題:
北京派遣至武漢、黃岡各醫(yī)院醫(yī)護(hù)人員對(duì)比表 | ||||||
武漢 | ||||||
5 | 7 | 9 | 12 | 11 | 8 | 19 |
20 | 7 | 7 | 3 | 1 | 20 | 13 |
黃岡 | ||||||
3 | 8 | 5 | 10 | 14 | 20 | |
4 | 2 | 9 | 18 | 11 | 15 | |
注:表格內(nèi)的數(shù)字代表派遣至每個(gè)醫(yī)院的醫(yī)護(hù)人員人數(shù) |
①派往武漢各醫(yī)院醫(yī)護(hù)人員的眾數(shù)是________人;
②派黃岡各醫(yī)院醫(yī)護(hù)人員的平均數(shù)約是________人(四舍五入取整數(shù));
③請(qǐng)你根據(jù)表格信息,判斷兩個(gè)地區(qū)哪里的疫情較為嚴(yán)重,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BCA=90°,CD是邊AB上的中線,分別過(guò)點(diǎn)C,D作BA和BC的平行線,兩線交于點(diǎn)E,且DE交AC于點(diǎn)O,連接AE.
(1)求證:四邊形ADCE是菱形;
(2)若∠B=60°,BC=6,求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某駐村扶貧小組實(shí)施產(chǎn)業(yè)扶貧,幫助貧困農(nóng)戶進(jìn)行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價(jià)不低于成本,又不高于成本的兩倍.經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),某天西瓜的銷售量y(千克)與銷售單價(jià)x(元/千克)的函數(shù)關(guān)系如下圖所示:
(1)求y與x的函數(shù)解析式(也稱關(guān)系式);
(2)求這一天銷售西瓜獲得的利潤(rùn)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2022年在北京將舉辦第24屆冬季奧運(yùn)會(huì),很多學(xué)校都開(kāi)展了冰雪項(xiàng)目學(xué)習(xí).如圖,滑雪軌道由AB、BC兩部分組成,AB、BC的長(zhǎng)度都為200米,一位同學(xué)乘滑雪板沿此軌道由A點(diǎn)滑到了C點(diǎn),若AB與水平面的夾角α為20°,BC與水平面的夾角β為45°,則他下降的高度為___________米(精確到1米,,sin20o=0.3420,tan20o=0.3640,cos20o=0.9400).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對(duì)稱軸為直線x=﹣1,拋物線交x軸于A、C兩點(diǎn),與直線y=x﹣1交于A、B兩點(diǎn),直線AB與拋物線的對(duì)稱軸交于點(diǎn)E.
(1)求拋物線的解板式.
(2)點(diǎn)P在直線AB上方的拋物線上運(yùn)動(dòng),若△ABP的面積最大,求此時(shí)點(diǎn)P的坐標(biāo).
(3)在平面直角坐標(biāo)系中,以點(diǎn)B、E、C、D為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出符合條件點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的半徑為6,是的內(nèi)接三角形,連接、,若與互補(bǔ),則線段的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品的出廠價(jià)為50元,成本為25元.由于在生產(chǎn)過(guò)程中,平均每生產(chǎn)1件產(chǎn)品,有污水排出,所以為了凈化環(huán)境,工廠設(shè)計(jì)兩種方案對(duì)污水進(jìn)行處理,并準(zhǔn)備實(shí)施.
方案甲:工廠將污水排到污水廠統(tǒng)一處理,每處理需付14元的排污費(fèi);
方案乙:工廠將污水進(jìn)行凈化處理后再排出,每處理污水所用原料費(fèi)為2元,且每月凈化設(shè)備的損耗費(fèi)為30000元.設(shè)工廠每月生產(chǎn)x件產(chǎn)品(x為正整數(shù),).
(1)根據(jù)題意填寫下表:
每月生產(chǎn)產(chǎn)品的數(shù)量/件 | 3500 | 4500 | 5500 | … |
方案甲處理污水的費(fèi)用/元 | 31500 | … | ||
方案乙處理污水的費(fèi)用/元 | 34500 | … |
(2)設(shè)工廠按方案甲處理污水時(shí)每月獲得的利潤(rùn)為元,按方案乙處理污水時(shí)每月獲得的利潤(rùn)為元,分別求,關(guān)于x的函數(shù)解析式;
(3)根據(jù)題意填空:
①若該工廠按方案甲處理污水時(shí)每月獲得的利潤(rùn)和按方案乙處理污水時(shí)每月獲得利潤(rùn)相同,則該工廠每月生產(chǎn)產(chǎn)品的數(shù)量為_______件;
②若該工廠每月生產(chǎn)產(chǎn)品的數(shù)量為7500件時(shí),則該工廠選用方案甲、方案乙中的方案_______處理污水時(shí)所獲得的利潤(rùn)多;
③若該工廠每月獲得的利潤(rùn)為81000元,則該工廠選用方案甲、方案乙中的方案________處理污水時(shí)生產(chǎn)產(chǎn)品的數(shù)量少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com