【題目】第三十屆夏季奧林匹克運(yùn)動(dòng)會(huì)將于2012年7月27日至8月12日在英國(guó)倫敦舉行,目前正在進(jìn)行火炬?zhèn)鬟f活動(dòng).某校學(xué)生會(huì)為了確定近期宣傳專刊的主題,想知道學(xué)生對(duì)倫敦奧運(yùn)會(huì)火炬?zhèn)鬟f路線的了解程度,決定隨機(jī)抽取部分學(xué)生進(jìn)行一次問卷調(diào)查,并根據(jù)收集到的信息進(jìn)行了統(tǒng)計(jì),繪制了如圖兩幅上不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有名;
(2)請(qǐng)補(bǔ)全折線統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角的大;
(3)若該校共有1200名學(xué)生,請(qǐng)根據(jù)上述調(diào)查結(jié)果估計(jì)該校學(xué)生中對(duì)倫敦奧運(yùn)火炬?zhèn)鬟f路線達(dá)到了“了解”和“基本了解”程度的總?cè)藬?shù).

【答案】
(1)60
(2)解:如圖:60﹣10﹣15﹣30=5(名);

“基本了解”部分所對(duì)應(yīng)扇形的圓心角是:360°× =90°


(3)解:該校學(xué)生中對(duì)倫敦奧運(yùn)火炬?zhèn)鬟f路線達(dá)到了“了解”和“基本了解”程度的總?cè)藬?shù)是:1200× =400(名)
【解析】解:(1)根據(jù)題意得:30÷50%=60(名) 所以答案是:60.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計(jì)圖的相關(guān)知識(shí),掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況,以及對(duì)折線統(tǒng)計(jì)圖的理解,了解能清楚地反映事物的變化情況,但是不能清楚地表示出在總體中所占的百分比.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個(gè),食堂師傅在窗口隨機(jī)發(fā)放(發(fā)放的食品價(jià)格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.
(1)按約定,“小李同學(xué)在該天早餐得到兩個(gè)油餅”是事件;(可能,必然,不可能)
(2)請(qǐng)用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB經(jīng)過點(diǎn)A(﹣4,0)、B(0,4),⊙O的半徑為1(O為坐標(biāo)原點(diǎn)),點(diǎn)P在直線AB上,過點(diǎn)P作⊙O的一條切線PQ,Q為切點(diǎn),則切線長(zhǎng)PQ的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線y= 經(jīng)過Rt△OMN斜邊上的點(diǎn)A,與直角邊MN相交于點(diǎn)B,已知OA=2AN,△OAB的面積為5,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A、C分別在x軸、y軸的正半軸上,且OA=2,OC=1,矩形對(duì)角線AC、OB相交于E,過點(diǎn)E的直線與邊OA、BC分別相交于點(diǎn)G、H.
(1)直接寫出點(diǎn)E的坐標(biāo):
(2)求證:AG=CH.
(3)如圖2,以O(shè)為圓心,OC為半徑的圓弧交OA與D,若直線GH與弧CD所在的圓相切于矩形內(nèi)一點(diǎn)F,求直線GH的函數(shù)關(guān)系式.
(4)在(3)的結(jié)論下,梯形ABHG的內(nèi)部有一點(diǎn)P,當(dāng)⊙P與HG、GA、AB都相切時(shí),求⊙P的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識(shí)遷移 當(dāng)a>0且x>0時(shí),因?yàn)? ,所以x﹣ + ≥0,從而x+ (當(dāng)x= )是取等號(hào)).
記函數(shù)y=x+ (a>0,x>0).由上述結(jié)論可知:當(dāng)x= 時(shí),該函數(shù)有最小值為2
直接應(yīng)用
已知函數(shù)y1=x(x>0)與函數(shù)y2= (x>0),則當(dāng)x=1時(shí),y1+y2取得最小值為2.
變形應(yīng)用
已知函數(shù)y1=x+1(x>﹣1)與函數(shù)y2=(x+1)2+4(x>﹣1),求 的最小值,并指出取得該最小值時(shí)相應(yīng)的x的值.
實(shí)際應(yīng)用
已知某汽車的一次運(yùn)輸成本包含以下三個(gè)部分,一是固定費(fèi)用,共360元;二是燃油費(fèi),每千米1.6元;三是折舊費(fèi),它與路程的平方成正比,比例系數(shù)為0.001.設(shè)該汽車一次運(yùn)輸?shù)穆烦虨閤千米,求當(dāng)x為多少時(shí),該汽車平均每千米的運(yùn)輸成本最低?最低是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準(zhǔn)備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點(diǎn)D在BA的延長(zhǎng)線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長(zhǎng).(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組正方形按如圖所示的方式放置,其中頂點(diǎn)B1在y軸上,頂點(diǎn)C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長(zhǎng)為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…則正方形A2016B2016C2016D2016的邊長(zhǎng)是( 。

A.( 2015
B.( 2016
C.( 2016
D.( 2015

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用大小相等的小正方形按一定規(guī)律拼成下列圖形,則第n個(gè)圖形中小正方形的個(gè)數(shù)是( 。

A.2n+1
B.n2﹣1
C.n2+2n
D.5n﹣2

查看答案和解析>>

同步練習(xí)冊(cè)答案