操作實(shí)驗(yàn):

如圖,把等腰三角形沿頂角平分線對(duì)折并展開,發(fā)現(xiàn)被折痕分成的兩個(gè)三角形成軸對(duì)稱.
所以△ABD≌△ACD,所以∠B=∠C
歸納結(jié)論:如果一個(gè)三角形有兩條邊相等,那么這兩條邊所對(duì)的角也相等.
根據(jù)上述內(nèi)容,回答下列問題:
思考驗(yàn)證:
如圖(4),在△ABC中,AB=AC

試說明∠B=∠C的理由.(添加輔助線說明)
探究應(yīng)用:
如圖(5),CBAB,垂足為B,DAAB,垂足為AEAB的中點(diǎn),AB=BC,CEBDF,連接DCDE、AC,ACDE交于點(diǎn)O

(1)BEAD是否相等?為什么?
(2)小明認(rèn)為AC垂直平分線段DE,你認(rèn)為對(duì)嗎?說說你的理由。
(3)∠DBC與∠DCB相等嗎?試說明理由.

思考驗(yàn)證:理由見解析,探究應(yīng)用(1)相等,理由見解析(2)對(duì),理由見解析(3)相等,理由見解析

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013屆江蘇省無錫市北塘區(qū)九年級(jí)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖1,已知有一張三角形紙片ABC的一邊AB=10,若D為AB邊上的點(diǎn),過點(diǎn)D作DE//BC交AC于點(diǎn)E,分別過點(diǎn)D、E作DF⊥BC,EG⊥BC,垂足分別為點(diǎn)F、點(diǎn)G,把三角形紙片ABC分別沿DE、DF、EG按圖1方式折疊,點(diǎn)A、B、C分別落在A´、B´、C´處.若A´、B´、C´在矩形DFGE內(nèi)或者其邊上,且互不重合,此時(shí)我們稱△A´B´C´(即圖中陰影部分)為“重疊三角形”.

(1)實(shí)驗(yàn)操作:當(dāng)AD=4時(shí),①若∠A=90°,AB=AC,請(qǐng)?jiān)趫D2中畫出“重疊三角形”,= ; 
②若AB=AC,BC=12,如圖3,= ;③若∠B=30°,∠C=45°,如圖4,= ;                     
(2)實(shí)驗(yàn)探究:若△ABC為等邊三角形(如圖5),設(shè)AD的長為m,若重疊三角形A´B´C´存在,試用含m的代數(shù)式表示重疊三角形A´B´C´的面積,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市北塘區(qū)九年級(jí)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,已知有一張三角形紙片ABC的一邊AB=10,若D為AB邊上的點(diǎn),過點(diǎn)D作DE//BC交AC于點(diǎn)E,分別過點(diǎn)D、E作DF⊥BC,EG⊥BC,垂足分別為點(diǎn)F、點(diǎn)G,把三角形紙片ABC分別沿DE、DF、EG按圖1方式折疊,點(diǎn)A、B、C分別落在A´、B´、C´處.若A´、B´、C´在矩形DFGE內(nèi)或者其邊上,且互不重合,此時(shí)我們稱△A´B´C´(即圖中陰影部分)為“重疊三角形”.

(1)實(shí)驗(yàn)操作:當(dāng)AD=4時(shí),①若∠A=90°,AB=AC,請(qǐng)?jiān)趫D2中畫出“重疊三角形”,= ; 

②若AB=AC,BC=12,如圖3,= ;③若∠B=30°,∠C=45°,如圖4,= ;                     

(2)實(shí)驗(yàn)探究:若△ABC為等邊三角形(如圖5),設(shè)AD的長為m,若重疊三角形A´B´C´存在,試用含m的代數(shù)式表示重疊三角形A´B´C´的面積,并寫出m的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案