【題目】如圖,矩形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E是矩形外一點(diǎn),,,連接AEBD于點(diǎn)F、連接CF

求證:四邊形BECO是菱形;

填空:若,則線段CF的長(zhǎng)為______

【答案】1)詳見解析;(2

【解析】

1)根據(jù)平行四邊形的判定定理得到四邊形OBEC是平行四邊形,根據(jù)矩形的性質(zhì)得到ACBD,OBBD,OCAC,根據(jù)菱形的判定定理即可得到結(jié)論;

2)根據(jù)平行線的性質(zhì)得到∠OAF=∠BEF,根據(jù)全等三角形的性質(zhì)得到OFBF,推出△OBC是等邊三角形,根據(jù)等邊三角形的性質(zhì)得到CFOB,解直角三角形即可得到結(jié)論.

解:,,

四邊形OBEC是平行四邊形,

四邊形ABCD是矩形,

,,,

平行四邊形OBEC是菱形;

,

,

,

中,

,

,

,

,

是等邊三角形,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長(zhǎng)線上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由DAM平移得到.若過點(diǎn)E作EHAC,H為垂足,則有以下結(jié)論:點(diǎn)M位置變化,使得DHC=60°時(shí),2BE=DM;無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,都有DM=HM;③無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,CHM一定大于135°.其中正確結(jié)論的序號(hào)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊ABC中,AB9NAB上一點(diǎn),且AN3BC的高線ADBC于點(diǎn)D,MAD上的動(dòng)點(diǎn),連結(jié)BMMN,則BM+MN的最小值是

A. B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓E是三角形ABC的外接圓, BAC=45°,AOBCO,且BO=2CO=3,分別以BCAO所在直線建立x.

1)求三角形ABC的外接圓直徑;

2)求過ABC三點(diǎn)的拋物線的解析式;

3)設(shè)P是(2)中拋物線上的一個(gè)動(dòng)點(diǎn),且三角形AOP為直角三角形,則這樣的點(diǎn)P有幾個(gè)?(只需寫出個(gè)數(shù),無(wú)需解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列事件中,必然事件是( )

A. 拋擲個(gè)均勻的骰子,出現(xiàn)點(diǎn)向上B. 兩條直線被第三條直線所截,同位角相等

C. 人中至少有人的生日相同D. 有理數(shù)的絕對(duì)值是非負(fù)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在四邊形中,對(duì)角線相交于點(diǎn),且,作,垂足為點(diǎn),交于點(diǎn),.

1)如圖中的圖1,求證:;

2)如圖中的圖2,的中點(diǎn),若,,在不添加任何輔助線的情況下,請(qǐng)找出圖中的四個(gè)三角形,使得每個(gè)三角形的面積都等于面積的倍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】慶元大道兩側(cè)需要綠化,某綠化組承擔(dān)了此項(xiàng)任務(wù),綠化組工作一段時(shí)間后,提高了工作效率,該綠化組完成的綠化面積S(單位m2)與工作時(shí)間t(單位:h)之間的函數(shù)關(guān)系如圖所示,則該綠化組提高工作效率前每小時(shí)完成的綠化面積是( )

A. 200B. 300C. 400D. 500

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, BAD CAE 90 AB AD , AE AC ABD ADB ACE AEC 45 ,AF CF ,垂足為 F .

1)若 AC 10 ,求四邊形 ABCD 的面積;

2)求證: CE 2 AF .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:O是坐標(biāo)原點(diǎn),Pmn)(m0)是函數(shù)y=k0)上的點(diǎn),過點(diǎn)P作直線PAOPP,直線PAx軸的正半軸交于點(diǎn)Aa0)(am).設(shè)OPA的面積為s,且s=1+

1)當(dāng)n=1時(shí),求點(diǎn)A的坐標(biāo);

2)若OP=AP,求k的值;

3)設(shè)n是小于20的整數(shù),且k≠OP2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案