【題目】如圖,用30m長的籬笆沿墻建造一邊靠墻的矩形菜園,已知墻長18m,設矩形的寬ABxm.

(1)用含x的代數(shù)式表示矩形的長BC;

(2)設矩形的面積為y,用含x的代數(shù)式表示矩形的面積y,并求出自變量的取值范圍;

(3)這個矩形菜園的長和寬各為多少時,菜園的面積y最大?最大面積是多少?

【答案】(1)(30﹣2x)m;(2)y=﹣2x2+30x(6≤x<15);(3)這個矩形的長、寬各為15m、7.5m時,菜園的面積最大,最大面積是112.5m2

【解析】

1)設菜園的寬ABxm,則BC為(30-2xm.

2由面積公式寫出yx的函數(shù)關系式,進而求出x的取值范圍;
32)中求得函數(shù)y=﹣2x2+30xa0,利用二次函數(shù)求最值的知識可得出菜園的最大面積.

解:(1)∵ABCDxm,

BC=(302xm

2)由題意得yx302x)=﹣2x2+30x6x15);

3)∵S=﹣2x2+30x=﹣2x7.52+112.5,

x7.5時,S有最大值,S最大112.5,

此時這個矩形的長為15m、寬為7.5m

答:這個矩形的長、寬各為15m7.5m時,菜園的面積最大,最大面積是112.5m2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在航線l的兩側(cè)分別有觀測點A和B,點B到航線l的距離BD為4km,點A位于點B北偏西60°方向且與B相距20km處.現(xiàn)有一艘輪船從位于點A南偏東74°方向的C處,沿該航線自東向西航行至觀測點A的正南方向E處.求這艘輪船的航行路程CE的長度.(結(jié)果精確到0.1km)(參考數(shù)據(jù):≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游樂場一轉(zhuǎn)角滑梯如圖所示,滑梯立柱AB、CD均垂直于地面,點E在線段BD上,在C點測得點A的仰角為30°,點E的俯角也為30°,測得B、E間距離為10米,立柱AB30米.求立柱CD的高(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子里裝有編號分別為1、2、3的球(除編號以為,其余都相同),其中1號球1個,3號球3個,從中隨機摸出一個球是2號球的概率為

(1)求袋子里2號球的個數(shù).

(2)甲、乙兩人分別從袋中摸出一個球(不放回),甲摸出球的編號記為x,乙摸出球的編號記為y,用列表法求點A(x,y)在直線y=x下方的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在二次函數(shù)y=ax2+bx+c的圖象中,你認為其中正確的是( )

A. a>0 B. c>0

C. b2﹣4ac<0 D. 一元二次方程ax2+bx+c=0有兩個相等實根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(感知)如圖,在四邊形ABCD中,點P在邊AB上(點P不與點A、B重合),∠A=∠B=∠DPC=90°.易證:△DAP∽△PBC(不要求證明).

(探究)如圖,在四邊形ABCD中,點P在邊AB上(點P不與點A、B重合),∠A=∠B=∠DPC.

(1)求證:△DAP~△PBC.

(2)PD=5,PC=10,BC=9,求AP的長.

(應用)如圖,在△ABC中,AC=BC=4,AB=6,點P在邊AB上(點P不與點A、B重合),連結(jié)CP,作∠CPE=∠A,PE與邊BC交于點E.當CE=3EB時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級學生開展踢毽子比賽活動,每班派5名學生參加,按團體總數(shù)排列名次,在規(guī)定時間內(nèi)每人踢100個以上(含100個)為優(yōu)秀,下表是成績最好的甲、乙兩班各5名學生的比賽數(shù)據(jù)(單位:個)

1號

2號

3號

4號

5號

總數(shù)

甲班

89

100

96

118

97

500

乙班

100

96

110

90

104

500

統(tǒng)計發(fā)現(xiàn)兩班總數(shù)相等,此時有人建議,可以通過考查數(shù)據(jù)中的其他信息來評判試從兩班比賽數(shù)據(jù)的中位數(shù)、方差、優(yōu)秀率三個方面考慮,你認為應該選定哪一個班為冠軍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四位同學在研究函數(shù)y=x2+bx+c(b,c是常數(shù))時,甲發(fā)現(xiàn)當x=1時,函數(shù)有最小值;乙發(fā)現(xiàn)﹣1是方程x2+bx+c=0的一個根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當x=2時,y=4,已知這四位同學中只有一位發(fā)現(xiàn)的結(jié)論是錯誤的,則該同學是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC,ABC=90°,AB=12,AD=4,BC=9,點PAB上一動點.若△PAD與△PBC是相似三角形,則滿足條件的點P的個數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案