【題目】如圖,RtABC,ACB=90,CDABD

(1)寫出圖中相似的三角形;

(2)求證: = AD·BD

【答案】(1)△ABC∽△ACD;△ABC∽△CBD; △ACD∽△CBD(2)證明見解析.

【解析】試題分析:(1)利用兩組角相等即可得到兩個三角形相似,可找到所有相似的三角形;

2)利用(1)中的ADC∽△CDB,可得到結(jié)論.

試題解析:解:(1∵∠ACB=90°CDAB,∴∠A+∠B=∠BCD+∠B,∴∠A=∠BCD,且ADC=∠CDB,∴△ADC∽△CDB,在ADCACB中,A=∠AADC=∠ACB,∴△ADC∽△ACB,同理可得CDB∽△ACB,圖中所有相似的三角形有:ADC∽△CDB,ADC∽△ACBCDB∽△ACB;

2∵△ADC∽△CDB, ,CD2=ADDB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ABM45°,AMBM,垂足為M,點CBM延長線上一點,連接AC.

(1)如圖①,若AB3,BC5,求AC的長;

(2)如圖②,點D是線段AM上一點,MDMC,點EABC外一點,ECAC,連接ED并延長交BC于點F且點F是線段BC的中點,求證:∠BDFCEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)如圖,已知直線和雙曲線 k0),Amn在雙曲線 上.當(dāng)m=n=2

1)直接寫出k的值;

2)將直線作怎樣的平移能使平移后的直線與雙曲線 只有一個交點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)拋物線經(jīng)過點A (4,0),點B (1,-3) ,求該拋物線的解析式;

(2)如圖,要修建一個圓形噴水池,在池中心豎直安裝一根水管,在水管的頂端安一個噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長?

(3)如圖,點P>0),在軸正半軸上,過點P作平行于軸的直線,分別交拋物線于點A,B,交拋物線于點C,D,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線軸交于點A,點B(1,0),與軸交于點C(0,﹣3),點M是其頂點.

(1)求拋物線解析式;

(2)第一象限拋物線上有一點D,滿足∠DAB=45°,求點D的坐標(biāo);

(3)直線 (﹣3<<﹣1)與x軸相交于點H.與線段AC,AM和拋物線分別相交于點E,F(xiàn),P.證明線段HE,EF,F(xiàn)P總能組成等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=-x-2x軸于點A,交y軸于點B,拋物線y2=ax2+bx+c的頂點為A,且經(jīng)過點B.

1)求該拋物線的解析式;

2)求當(dāng)y1≥y2x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副直角三角板如圖放置,點C在FD的延長線上,ABCF,F=ACB=90°,E=45°,A=60°,AC=10,試求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市人民廣場上要建一個圓形的噴水池,并在水池中央垂直安裝一個柱子OP,柱子頂端P處裝上噴頭,由P處向外噴出的水流(在各個方向上)沿形狀相同的拋物線路徑落下(如圖所示).若已知OP=3米,噴出的水流的最高點A距水平面的高度是4米,離柱子OP的距離為1米.

1)求這條拋物線的解析式;

2)若不計其它因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中錯誤的是(

A某種彩票的中獎率為1%,買100張彩票一定有1張中獎

B.從裝有10個紅球的袋子中,摸出1個白球是不可能事件

C.為了解一批日光燈的使用壽命,可采用抽樣調(diào)查的方式

D.?dāng)S一枚普通的正六面體骰子,出現(xiàn)向上一面點數(shù)是2的概率是

查看答案和解析>>

同步練習(xí)冊答案