【題目】如圖,在Rt△ABC中,∠ACB=90,CDAB于D.
(1)寫出圖中相似的三角形;
(2)求證: = AD·BD .
【答案】(1)△ABC∽△ACD;△ABC∽△CBD; △ACD∽△CBD(2)證明見解析.
【解析】試題分析:(1)利用兩組角相等即可得到兩個三角形相似,可找到所有相似的三角形;
(2)利用(1)中的△ADC∽△CDB,可得到結(jié)論.
試題解析:解:(1)∵∠ACB=90°,CD⊥AB,∴∠A+∠B=∠BCD+∠B,∴∠A=∠BCD,且∠ADC=∠CDB,∴△ADC∽△CDB,在△ADC和△ACB中,∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,同理可得△CDB∽△ACB,∴圖中所有相似的三角形有:△ADC∽△CDB,△ADC∽△ACB,△CDB∽△ACB;
(2)∵△ADC∽△CDB,∴ ,∴CD2=ADDB.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABM=45°,AM⊥BM,垂足為M,點C是BM延長線上一點,連接AC.
(1)如圖①,若AB=3,BC=5,求AC的長;
(2)如圖②,點D是線段AM上一點,MD=MC,點E是△ABC外一點,EC=AC,連接ED并延長交BC于點F,且點F是線段BC的中點,求證:∠BDF=∠CEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)如圖,已知直線和雙曲線 (k>0),點A(m,n)在雙曲線 上.當(dāng)m=n=2時.
(1)直接寫出k的值;
(2)將直線作怎樣的平移能使平移后的直線與雙曲線 只有一個交點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)拋物線經(jīng)過點A (4,0),點B (1,-3) ,求該拋物線的解析式;
(2)如圖,要修建一個圓形噴水池,在池中心豎直安裝一根水管,在水管的頂端安一個噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長?
(3)如圖,點P(>0),在軸正半軸上,過點P作平行于軸的直線,分別交拋物線于點A,B,交拋物線于點C,D,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于點A,點B(1,0),與軸交于點C(0,﹣3),點M是其頂點.
(1)求拋物線解析式;
(2)第一象限拋物線上有一點D,滿足∠DAB=45°,求點D的坐標(biāo);
(3)直線 (﹣3<<﹣1)與x軸相交于點H.與線段AC,AM和拋物線分別相交于點E,F(xiàn),P.證明線段HE,EF,F(xiàn)P總能組成等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=-x-2交x軸于點A,交y軸于點B,拋物線y2=ax2+bx+c的頂點為A,且經(jīng)過點B.
(1)求該拋物線的解析式;
(2)求當(dāng)y1≥y2時x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副直角三角板如圖放置,點C在FD的延長線上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,試求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市人民廣場上要建一個圓形的噴水池,并在水池中央垂直安裝一個柱子OP,柱子頂端P處裝上噴頭,由P處向外噴出的水流(在各個方向上)沿形狀相同的拋物線路徑落下(如圖所示).若已知OP=3米,噴出的水流的最高點A距水平面的高度是4米,離柱子OP的距離為1米.
(1)求這條拋物線的解析式;
(2)若不計其它因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的是( )
A.某種彩票的中獎率為1%,買100張彩票一定有1張中獎
B.從裝有10個紅球的袋子中,摸出1個白球是不可能事件
C.為了解一批日光燈的使用壽命,可采用抽樣調(diào)查的方式
D.?dāng)S一枚普通的正六面體骰子,出現(xiàn)向上一面點數(shù)是2的概率是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com