已知△ABC為等腰三角形,AB=AC,∠BAC=120°,O為BC邊的中點,將-含30°角的直角三角板PQR放置到△ABC上,使得P點與O點重合,將三角板繞著O點旋轉,在旋轉過程中,PQ、PR分別與直線AB、AC交于點E、F:
(1)當PQ、PR分別與線段AB、AC交于點E、F時(如圖a),求證:∠BEO=∠COF;
(2)當PQ、PR分別與直線AB、AC交于點E、F時(如圖b、圖c),∠BEO與∠COF的大小關系是否改變?請直接寫出結論;
(3)在圖c中,連接EF,若AB=4,BE=數(shù)學公式,求CF的長.

(1)證明:∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°.
∵∠OPR=30°,
∴∠BPE+∠CPF=150°.
而∠BPE+∠BEP=150°,
∴∠CPF=∠BEP,即∠COF=∠BEO.

解:(2)∠BEO=∠COF不改變.

(3)連接AO,則AO⊥BC.
∴OB=ABcos30°=
由(1)得∠COF=∠BEO,∠C=∠B,
∴△BOE∽△CFO.
,
∵OC=OB,

分析:(1)由已知可得∠B=∠C=30°,已知∠OPR=30°,根據(jù)角之間的關系,即可得到∠COF=∠BEO;
(2)連接AO,則AO⊥BC.
根據(jù)三角函數(shù),可求得OB的長;
根據(jù)兩組對應邊的比相等,且相應的夾角相等的兩個三角形相似,得到△BOE∽△CFO,進一步得到對應邊比例,從而求得CF的長.
點評:此題主要考查學生對相似三角形的判定及旋轉的性質等知識點的綜合運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內部旋轉,觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結果.
(2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內部旋轉,觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結果.
(2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年廣東省湛江市中考數(shù)學模擬試卷(五)(解析版) 題型:解答題

如圖,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內部旋轉,觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結果.
(2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省湛江市中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

如圖,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內部旋轉,觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結果.
(2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省鹽城市鹽城中學初三年級中考模擬數(shù)學試卷1(解析版) 題型:解答題

如圖,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內部旋轉,觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結果.
(2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

查看答案和解析>>

同步練習冊答案