【題目】如圖:四邊形的內(nèi)接四邊形,連接,的直徑,于點(diǎn)

(1)如圖,求證:;

(2)如圖,連接,當(dāng)時(shí),求證:

(3)如圖,在(2)的條件下,延長(zhǎng)于點(diǎn),連接, ,求的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).

【解析】

(1)根據(jù)等角的余角相等即可證明.

(2)如圖2中,連接.只要證明,推出,推出即可.

(3)延長(zhǎng),連接,作,連接.由,推出,推出,設(shè),則,由,推出,可得,推出,即,再證明四邊形是等腰梯形,則易證,推出,推出,在中,可得,即,推出,延長(zhǎng)即可求出即可解決問(wèn)題.

(1)證明:如圖1中,

是直徑,

,

,

,

,

(2)證明:如圖2中,連接

,

,

,

,

,

,

,

(3)解:延長(zhǎng),連接,作,,連接

是直徑,

,

,

,設(shè),則,

,

,

,

,

,

,

,

∴四邊形是等腰梯形,則易證,

,

中,∵

,

,

,

,,

,∵,

,

,

中,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C為圓上(除A、B外)一動(dòng)點(diǎn),∠ACB的角平分線交⊙OD,若AC=8,BC=6,則BD的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙OCD切于點(diǎn)EAD交⊙O于點(diǎn)F

1)求證:∠ABE45°;

2)連接CF,若CE2DE,求tanDFC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分8分)切實(shí)減輕學(xué)生課業(yè)負(fù)擔(dān)是我市作業(yè)改革的一項(xiàng)重要舉措.某中學(xué)為了解本校學(xué)生平均每天的課外作業(yè)時(shí)間,隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并將調(diào)查結(jié)果分為A、B、C、D四個(gè)等級(jí).A1小時(shí)以內(nèi),B1小時(shí)-15小時(shí),C15小時(shí)-2小時(shí),D:小時(shí)以上.根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

1)該校共調(diào)查了_________名學(xué)生;

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)表示等級(jí)A的扇形圓心角的度數(shù)是____________;

4)在此次問(wèn)卷調(diào)查中,甲、乙兩班各有2人平均每天課外作業(yè)時(shí)間都是2小時(shí)以上,從這4人中任選2人去參加座談,用列表或樹(shù)狀圖的方法求選出的2人來(lái)自不同班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,BA=BC.點(diǎn)DAB的中點(diǎn),連結(jié)CD,過(guò)點(diǎn)BBGCD,分別交CD、CA于點(diǎn)E、F,與過(guò)點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連結(jié)DF.給出以下四個(gè)結(jié)論:①;②點(diǎn)FGE的中點(diǎn);③AF=AB;SABC=5SBDF,其中正確的結(jié)論序號(hào)是( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在不透明的口袋中,裝有3個(gè)分別標(biāo)有數(shù)字1、2、3的小球,它們除標(biāo)示的數(shù)字外完全相同,小紅、小明和小亮用這些道具做摸球游戲.游戲規(guī)則如下:由小紅隨機(jī)從口袋中摸出一個(gè)小球,記錄下數(shù)字,放回?fù)u勻,再由小明隨機(jī)從口袋中摸出一個(gè)小球,記錄下數(shù)字,放回?fù)u勻.如果兩人摸到的小球上數(shù)字相同,那么小亮獲勝;如果兩人摸到的小球上數(shù)字不同,那么小球上數(shù)字大的一方獲勝.

1)請(qǐng)用樹(shù)狀圖或列表的方法表示一次游戲中所有可能出現(xiàn)的結(jié)果;

2)這個(gè)游戲規(guī)則對(duì)三人公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+b與雙曲線 交于A、B兩點(diǎn),連接OA、OBAMy軸于點(diǎn)M,BNx軸于點(diǎn)N,有以下結(jié)論:①SAOMSBON;②OAOB;③五邊形MABNO的面積;④若∠AOB45°,則SAOB2k,⑤當(dāng)AB 時(shí),ONBN1;其中結(jié)論正確的個(gè)數(shù)有( 。

A. 5個(gè)B. 4個(gè)C. 3個(gè)D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C測(cè)得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB=30m.

(1)求BCD的度數(shù).

(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°0.36,tan18°0.32)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為8,的中點(diǎn),邊上的動(dòng)點(diǎn),連結(jié),以點(diǎn)為圓心,長(zhǎng)為半徑作.

1)當(dāng)________時(shí),;

2)當(dāng)與正方形的邊相切時(shí),求的長(zhǎng);

3)設(shè)的半徑為,請(qǐng)直接寫出正方形恰好有兩個(gè)頂點(diǎn)在圓內(nèi)的的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案