【題目】如圖,在直角坐標系中,矩形OABC的頂點C在x軸的負半軸上,點A在y軸正半軸上,矩形OABC的面積為8.把矩形OABC沿DE翻折,使點B與點O重合,點C落在第三象限的G點處,作EH⊥x軸于H,過E點的反比例函數(shù)y=圖象恰好過DE的中點F.則k=_____,線段EH的長為:_____.
【答案】-2 2
【解析】
連接BO與ED交于點Q,過點Q作QG⊥x軸,垂足為G,可通過三角形全等證得BO與ED的交點就是ED的中點F,由相似三角形的性質(zhì)可得S△OGF=S△OCB,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義可求出k,從而求出S△OAE,進而可以得到AB=4AE,即BE=3AE.由軸對稱的性質(zhì)可得OE=BE,從而得到OE=3AE,也就有AO=2AE,根據(jù)△OAE的面積可以求出AE,OA的值.易證四邊形OAEH為矩形,從而得到EH=OA,就可求出EH的值.
解:連接BO與ED交于點Q,過點Q作QN⊥x軸,垂足為N,如圖所示,
∵矩形OABC沿DE翻折,點B與點O重合,
∴BQ=OQ,BE=EO.
∵四邊形OABC是矩形,
∴AB∥CO,∠BCO=∠OAB=90°.
∴∠EBQ=∠DOQ.
在△BEQ和△ODQ中,
.
∴△BEQ≌△ODQ(ASA).
∴EQ=DQ.
∴點Q是ED的中點.
∵∠QNO=∠BCO=90°,
∴QN∥BC.
∴△ONQ∽△OCB.
∴.
∴S△ONQ= S△OCB.
∵S矩形OABC=8,
∴S△OCB=S△OAB=4.
∴S△ONQ=.
∵點F是ED的中點,
∴點F與點Q重合.
∴S△ONF=.
∵點F在反比例函數(shù)y=上,
∴=.
∵k<0,
∴k=﹣2.
∴S△OAE==.
∵S△OAB=4,
∴AB=4AE.
∴BE=3AE.
由軸對稱的性質(zhì)可得:OE=BE.
∴OE=3AE.OA==2AE.
∴S△OAE=AOAE=×2AE×AE=.
∴AE=1.
∴OA=2×1=2.
∵∠EHO=∠HOA=∠OAE=90°,
∴四邊形OAEH是矩形.
∴EH=OA=2.
故答案分別為:﹣2、2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AB為半圓O的直徑,半徑的長為4cm,點C為半圓上一動點,過點C作CE⊥AB,垂足為點E,點D為弧AC的中點,連接DE,如果DE=2OE,求線段AE的長.
小何根據(jù)學習函數(shù)的經(jīng)驗,將此問題轉(zhuǎn)化為函數(shù)問題解決.
小華假設AE的長度為xcm,線段DE的長度為ycm.
(當點C與點A重合時,AE的長度為0cm),對函數(shù)y隨自變量x的變化而變化的規(guī)律進行探究.
下面是小何的探究過程,請補充完整:(說明:相關數(shù)據(jù)保留一位小數(shù)).
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y/cm | 0 | 1.6 | 2.5 | 3.3 | 4.0 | 4.7 |
| 5.8 | 5.7 |
當x=6cm時,請你在圖中幫助小何完成作圖,并使用刻度尺度量此時線段DE的長度,填寫在表格空白處:
(2)在圖2中建立平面直角坐標系,描出補全后的表中各組對應值為坐標的點,畫出該函數(shù)的圖象;
(3)結合畫出的函數(shù)圖象解決問題,當DE=2OE時,AE的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣1(a>0)與直線y=kx+3交于MN兩點,在y軸負半軸上存在一定點P,使得不論k取何值,直線PM與PN總是關于y軸對稱,則點P的坐標是_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖7所示,點、、在軸上,且,分別過點、、作軸的平行線,與反比例函數(shù)的圖象分別交于點、、,分別過點 作軸的平行線,分別與軸交于點 ,連接 ,那么圖中陰影部分的面積之和為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級數(shù)學興趣小組的同學調(diào)查了若干名家長對“初中學生帶手機上學”現(xiàn)象的看法,統(tǒng)計整理并制作了如下的條形與扇形統(tǒng)計圖.
依據(jù)圖中信息,得出下列結論:
(1)接受這次調(diào)查的家長人數(shù)為200人;
(2)在扇形統(tǒng)計圖中,“不贊同”的家長部分所對應的扇形圓心角大小為162°;
(3)表示“無所謂”的家長人數(shù)為40人;
(4)隨機抽查一名接受調(diào)查的家長,恰好抽到“很贊同”的家長的概率是.
其中正確的結論個數(shù)為( )
A.4 | B.3 | C.2 | D.1 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x+b與x軸相交于點A,與y軸相交于點B,拋物線y=ax2﹣4ax+4經(jīng)過點A和點B,并與x軸相交于另一點C,對稱軸與x軸相交于點 D.
(1)求拋物線的表達式;
(2)求證:△BOD∽△AOB;
(3)如果點P在線段AB上,且∠BCP=∠DBO,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=10,AC=8.線段AD由線段AB繞點A按逆時針方向旋轉(zhuǎn)90°得到,△EFG由△ABC沿CB方向平移得到,且直線EF過點D.則CG=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價為6元件,該產(chǎn)品在正式投放市場前通過代銷點進行了為期30天的試銷售,售價為8元/件,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪成如圖所示的圖象,圖中的折線ODE表示日銷售量y(件)與銷售時間x(天)之間的函數(shù)關系,已知線段DE表示的函數(shù)關系中,時間每增加1天,日銷售量減少5件.
(1)第24天的日銷售量是 件,日銷售利潤是 元.
(2)求線段DE所對應的函數(shù)關系式.(不要求寫出自變量的取值范圍)
(3)通過計算說明試銷售期間第幾天的日銷售量最大?最大日銷售量是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形OABC是矩形,四邊形ADEF是正方形,點A、D在x軸的負半軸上,點C在y軸的正半軸上,點F在AB上,點B、E在反比例函數(shù)y=(k為常數(shù),k≠0)的圖象上,正方形ADEF的面積為4,且BF=2AF,則k值為( )
A. 4B. -4C. 6D. -6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com