如圖,已知CD⊥AB,BE⊥AC,垂足分別為D、E,BE、CD交于點O,且AO平分∠BAC,那么圖中全等三角形共有    對.
4

試題分析:根據(jù)已知條件可以找出題目中有哪些相等的角以及線段,然后猜想可能全等的三角形,然后一一進行驗證.
解:∵CD⊥AB,BE⊥AC,垂足分別為D、E,且AO平分∠BAC,
∴△ODA≌△OEA,
∴∠B=∠C,AD=AE,
∴△ADC≌△AEB,
∴AB=AC,
∴△OAC≌△OAB,
∴△COE≌△OBD.
故填4.
點評:本題考查了三角形全等的判定方法;提出猜想,驗證猜想是解決幾何問題的基本方法,做題時要注意從已知條件開始思考結(jié)合全等的判定方法逐一判斷,做到不重不漏,由易到難.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

等腰三角形的兩邊長分別是,則其周長為(   )
A.13和17B.13C.17D.10

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,沿AC方向開山修一條公路,為了加快施工進度,要在小山的另一邊尋找點E同時施工,從AC上的一點B取∠ABD=127º,沿BD的方向前進,取∠BDE=37º,測得BD=520m,并且AC、BD和DE在同一平面內(nèi).

(1)施工點E 離D多遠正好能使A、C、E成一直線(結(jié)果保留整數(shù))
(2)在(1)的條件下,若BC=80m,求公路CE段的長(結(jié)果保留整數(shù))
(參考數(shù)據(jù):sin37º≈0.60,  cos37º≈ 0.80,  tan37º≈0.75))

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,若干全等正五邊形排成環(huán)狀.圖中所示的是前3個五邊形,要完成這一圓環(huán)還需( 。﹤五邊形.
A.6B.7C.8D.9

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,兩個全等的直角三角形△ABC和△A1B1C1中,∠ACB=∠A1C1B1=90°,兩條相等的直角邊AC,A1C1在同一直線上,A1B1與AB交于O,AB與B1C1交于E1,A1B1與BC交于E.
(1)寫出圖中除△ABC≌△A1B1C1外的所有其它各組全等三角形(不再連線和標注字母);
(2)求證:B1E1=BE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知AC=BD,則再添加條件                       ,可證出△ABC≌△BAD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

給出下列各命題:
①有兩邊和它們的夾角對應相等的兩個三角形一定全等;
②有兩邊和一角對應相等的兩個三角形一定全等;
③有兩條直角邊對應相等的兩個直角三角形一定全等;
④有兩條邊分別相等的兩個直角三角形一定全等;
其中假命題共有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

等腰三角形一個外角等于110°,則底角為               

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點E在△ABC外部,點D在BC邊上,DE交AC于點F,若∠1=∠2=∠3,AC=AE,

試說明:(1)∠C=∠E
(2)△ABC≌△ADE的理由。

查看答案和解析>>

同步練習冊答案