如圖,AB、AC是⊙O的兩條切線,切點分別為B、C,D是優(yōu)弧BC上的一點,已知∠BAC=80°,那么∠BDC=______度.
連接OB、OC,則∠ABO=∠ACO=90°,
∠BAC+∠BOC=360°-(∠ABO+∠ACO)=360°-180°=180°,
∠BOC=180°-∠BAC=180°-80°=100°,
故∠BDC=
1
2
∠BOC=
1
2
×100=50°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,等邊△ABC的邊長為6,BC在x軸上,BC邊上的高線AO在y軸上,直線l繞點A轉動(與線段BC沒有交點).設與AB、l、x軸相切的⊙O1的半徑為r1,與AC、l、x軸相切的⊙O2半徑為r2
(1)求兩圓的半徑之和;
(2)探索直線l繞點A轉動到什么位置時兩圓的面積之和最小?最小值是多少?
(3)若r1-r2=
3
,求經過點O1、O2的一次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖是某種圓形裝置的示意圖,圓形裝置中,⊙O的直徑AB=5,AB的不同側有定點C和動點P,tan∠CAB=
4
3
.其運動過程是:點P在弧AB上滑動,過點C作CP的垂線,與PB的延長線交于點Q.
(1)當PC=______時,CQ與⊙O相切;此時CQ=______.
(2)當點P運動到與點C關于AB對稱時,求CQ的長;
(3)當點P運動到弧AB的中點時,求CQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

⊙O的圓心到直線l的距離為3cm,⊙O的半徑為1cm,將直線l向垂直于l的方向平移,使l與⊙O相切,則平移的距離是(  )
A.1cmB.2cmC.4cmD.2cm或4cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,菱形ABCD的邊長為2cm,∠DAB=60°.點P從A點出發(fā),以
3
cm/s的速度,沿AC向C作勻速運動;與此同時,點Q也從A點出發(fā),以1cm/s的速度,沿射線AB作勻速運動.當P運動到C點時,P、Q都停止運動.設點P運動的時間為ts.
(1)當P異于A、C時,請說明PQBC;
(2)以P為圓心、PQ長為半徑作圓,請問:在整個運動過程中,t為怎樣的值時,⊙P與邊BC分別有1個公共點和2個公共點?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在邊長為2的等邊三角形ABC中,以B為圓心,AB為半徑作
AC
,在扇形BAC內作⊙O與AB、BC、
AC
都相切,則⊙O的周長等于( 。
A.
4
9
π
B.
2
3
π
C.
4
3
π
D.π

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

△ABC中,∠ACB=90°,AB=4,⊙C的半徑長是2,當∠A=30°時,⊙C與直線AB的位置關系是______;當∠A=45°時,⊙C與直線AB的位置關系是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,四邊形ABCD內接于以BC為直徑的⊙O,且AB=AD,延長CB、DA,交于P點,CE與⊙O相切于點C,CE與PD的延長線交于點E.當PB=OC,CD=18時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,點F在CD上,點O是BF的中點,以BF為直徑的半圓與AD相切于點E.
(1)求證:點E是AD的中點;
(2)設BF=5,求正方形ABCD的邊長.

查看答案和解析>>

同步練習冊答案