如圖,△ABO中,OA=OB,以O(shè)為圓心的圓經(jīng)過(guò)AB的中點(diǎn)C,且分別交OA、OB于點(diǎn)E、F.
(1)求證:AB是⊙O的切線;
(2)若△ABO腰上的高等于底邊的一半,且AB=4
3
,求
ECF
的長(zhǎng).
(1)證明:連接OC.(1分)
∵OA=OB,AC=BC,
∴OC⊥AB.
∵C在⊙O上,
∴AB是⊙O的切線.(2分)

(2)過(guò)B點(diǎn)作BD⊥AO,交AO的延長(zhǎng)線于D點(diǎn).
由題意有AB=2BD,AB=4
3

在Rt△ABD中,根據(jù)正弦定義sinA=
BD
AB
=
1
2
,
∴∠A=30度.(3分)
在Rt△ACO中,AC=
1
2
AB=2
3
,∠A=30°,
則AO=2OC.
由勾股定理,求得OC=2.(4分)
∵OA=OB,且∠A=30°,
∴∠AOB=120度.
由弧長(zhǎng)公式可求得
ECF
的長(zhǎng)為
4
3
π
.(5分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在以O(shè)為圓心的兩個(gè)圓中,大圓的半徑為5,小圓的半徑為3,則與小圓相切的大圓的弦長(zhǎng)為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,A、B為⊙O上兩點(diǎn),下列尋找弧AB的中點(diǎn)C的方法中正確的有( 。
作法一:連接OA、OB,作∠AOB的角平分線交弧AB于點(diǎn)C;
作法二:連接AB,作OH⊥AB于H,交弧AB于點(diǎn)C;
作法三:在優(yōu)弧AmB上取一點(diǎn)D,作∠ADB的平分線交弧AB于點(diǎn)C;
作法四:分別過(guò)A、B作⊙O的切線,兩切線交于點(diǎn)P,連接OP交弧AB于C.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,邊長(zhǎng)為1的正方形ABCD中,以A為圓心,1為半徑作
BD
,將一塊直角三角板的直角頂點(diǎn)P放置在
BD
(不包括端點(diǎn)B、D)上滑動(dòng),一條直角邊通過(guò)頂點(diǎn)A,另一條直角邊與邊BC相交于點(diǎn)Q,連接PC,并設(shè)PQ=x,以下我們對(duì)△CPQ進(jìn)行研究.
(1)△CPQ能否為等邊三角形?若能,則求出x的值;若不能,則說(shuō)明理由;
(2)求△CPQ周長(zhǎng)的最小值;
(3)當(dāng)△CPQ分別為銳角三角形、直角三角形和鈍角三角形時(shí)分別求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,以點(diǎn)O為圓心的兩個(gè)同心圓,半徑分別為5和3,若大圓的弦AB與小圓相交,則弦長(zhǎng)AB的取值范圍是( 。
A.8≤AB≤10B.AB≥8C.8<AB≤10D.8<AB<10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O的割線PAB交于⊙O于點(diǎn)A、B,PA=4cm,AB=5cm,PO=7.5cm,則⊙O的直徑長(zhǎng)為_(kāi)_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知CA、CB都經(jīng)過(guò)點(diǎn)C,AC是⊙B的切線,⊙B交AB于點(diǎn)D,連接CD并延長(zhǎng)交OA于點(diǎn)E,連接AF.
(1)求證:AE⊥AB;
(2)求證:DE•DC=2AD•DB;
(3)如果AE=3,BD=4,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知P是⊙O外一點(diǎn),OP交⊙O于點(diǎn)A,PA=8,點(diǎn)P到⊙O的切線長(zhǎng)為12,則⊙O的半徑長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,圓O1與圓O2都經(jīng)過(guò)A、B兩點(diǎn),經(jīng)過(guò)點(diǎn)A的直線CD與圓O1交于點(diǎn)C,與圓O2交于點(diǎn)D.經(jīng)過(guò)點(diǎn)B的直線EF與圓O1交于點(diǎn)E,與圓O2交于點(diǎn)F.

(1)求證:CEDF;
(2)在圖1中,若CD和EF可以分別繞點(diǎn)A和點(diǎn)B轉(zhuǎn)動(dòng),當(dāng)點(diǎn)C與點(diǎn)E重合時(shí)(如圖2),過(guò)點(diǎn)E作直線MNDF,試判斷直線MN與圓O1的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案