【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為( 。
A. 2 B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=15,AC=12,BC=9,經(jīng)過點C且與邊AB相切的動圓與CB、CA分別相交于點E、F,則線段EF長度的最小值是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線y=ax2+2交x軸于點A(﹣2,0)、B,交y軸于點C;
(1)求拋物線的解析式;
(2)點P從點A出發(fā),以1個單位/秒的速度向終點B運(yùn)動,同時點Q從點C出發(fā),以相同的速度沿y軸正方向向上運(yùn)動,運(yùn)動的時間為t秒,當(dāng)點P到達(dá)點B時,點Q也停止運(yùn)動,設(shè)△PQC的面積為S,求S與t間的函數(shù)關(guān)系式并直接寫出t的取值范圍;
(3)在(2)的條件下,當(dāng)點P在線段OB上時,設(shè)PQ交直線AC于點G,過P作PE⊥AC于點E,求EG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M在線段OA和射線AC上運(yùn)動.
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)是否存在點M,使△OMC的面積是△OAC的面積的?若存在求出此時點M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:
我們已經(jīng)學(xué)習(xí)了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運(yùn)用十字相乘法,請從以下一元二次方程中任選兩個,并選擇你認(rèn)為適當(dāng)?shù)姆椒ń膺@個方程.
① ② ③ ④
我選擇第 個方程。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】草莓是諸暨盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.
(1)求y與x的函數(shù)解析式
(2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,∠B=30°,D是AB的中點,AE∥CD,AC∥ED,
求證:四邊形ACDE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊直角三角形的一條直角邊重合疊放,已知AC=BC=+1,∠D=60°,則兩條斜邊的交點E到直角邊BC的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是等邊內(nèi)一點,.將繞點按順時針方向旋轉(zhuǎn)得,連接.
(1)求證:是等邊三角形;
(2)當(dāng)時,試判斷的形狀,并說明理由;
(3)探究:當(dāng)為多少度時,是等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com