【題目】尺規(guī)作圖:某學校正在進行校園環(huán)境的改造工程設計,準備在校內一塊四邊形花壇內栽上一棵桂花樹.如圖,要求桂花樹的位置(視為點P),到花壇的兩邊AB、BC的距離相等,并且點P到點A、D的距離也相等.請用尺規(guī)作圖作出栽種桂花樹的位置點P(不寫作法,保留作圖痕跡).

【答案】作圖見解析.

【解析】試題分析:分別作出AD的垂直平分線及∠ABC的平分線,兩條直線的交點即為P點的位置.

試題解析:(1分別以A、D為圓心,以大于AD為半徑畫圓,兩圓相交于E、F兩點;

連接EF,則EF即為線段AD的垂直平分線.

2B為圓心,以大于任意長為半徑畫圓,分別交AB、BCG、H

分別以G、H為圓心,以大于GH為半徑畫圓,兩圓相交于點I,連接BI,則BI即為∠ABC的平分線.

③BIEF相交于點P,則點P即為所求點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD上一點,PQ垂直平分BE,分別交AD,BE,BC于點P,OQ,連接BPEQ

1)求證:四邊形BPEQ是菱形;

2FAB的中點,則線段OF與線段AE有什么位置關系和數(shù)量關系,并說明理由;

3)在(2)的條件下,若AB6,OF4,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形 是一個邊長為 6 的正方形,點 的延長線上,連接 ,過 的垂線,交 的延長線于點 ,且 ,則 _____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】O為直線AB上的一點,OCOD,射線OE平分∠AOD.

(1)如圖①,判斷∠COE和∠BOD之間的數(shù)量關系,并說明理由;

(2)若將∠COD繞點O旋轉至圖②的位置,試問(1)中∠COE和∠BOD之間的數(shù)量關系是否發(fā)生變化?并說明理由;

(3)若將∠COD繞點O旋轉至圖③的位置,探究∠COE和∠BOD之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請從以下四個一元二次方程中任選三個并用適當?shù)姆椒ń膺@三個方程

(1)x2x﹣1=0;

(2)(y﹣2)2﹣12=0;

(3)(1+m2=m+1;

(4)t2﹣4t=5.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一數(shù)值轉換器,原理如圖所示,若開始輸入x的值是7,可發(fā)現(xiàn)第1次輸出的結果是12,第2次輸出的結果是6,第3次輸出的結果是    ,依次繼續(xù)下去,第2013次輸出的結果是    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某沿海城市A接到臺風警報,在該城市正南方向260 kmB處有一臺風中心,沿BC方向以15 km/h的速度向C移動,已知城市ABC的距離AD=100 km,那么臺風中心經(jīng)過多長時間從B點移動到D點?如果在距臺風中心30 km的圓形區(qū)域內都將受到臺風的影響,正在D點休息的游人在接到臺風警報后的幾小時內撤離才可以免受臺風的影響?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的二次函數(shù)y=x2-(2m-1)x+m2+3m+4.

(1)探究m取不同值時,二次函數(shù)y的圖象與x軸的交點的個數(shù)情況;

(2)設二次函數(shù)的圖象與x軸的交點為A(x1,0),B(x2,0),且x12+x22=5,與y軸的交點為C,它的頂點為M,求直線CM的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2﹣4x+c的圖象經(jīng)過坐標原點,與x軸交于點A(﹣4,0)

(1)求此二次函數(shù)的解析式,并求出拋物線的頂點坐標;

(2)在拋物線上存在點P,使AOP的面積為10?求出點P的坐標.

查看答案和解析>>

同步練習冊答案