已知:如圖,

小題1:求證:;
小題2:當(dāng)°時,求證:

小題1:∵ 
∴△ABC∽△DEF   
,
小題1:   
  
又∵
  
∴△ABD∽△ACE 
 

      
 即

小題1:利用邊成比例證出△ABC∽△DEF,從而得出結(jié)論;
小題1:利用邊角的關(guān)系證出△ABD∽△ACE,從而就出,得出結(jié)論。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

   如圖,AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F.切點為G,連接AG交CD于K.
(1)求證:KE=GE;
(2)若=KD·GE,試判斷AC與EF的位置關(guān)系,并說明理由;
(3) 在(2)的條件下,若sinE=,AK=,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC.只用直尺(沒有刻度的尺)和圓規(guī),求作一個△DEF,使得△DEF∽△ABC,且EF=BC.(要求保留作圖痕跡,不必寫出作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞頂點C順時針旋轉(zhuǎn),旋轉(zhuǎn)角為(0°<<180°),得到△A1B1C.

小題1:如圖1,當(dāng)AB∥CB1時,設(shè)A1B1與BC相交于點D.證明:△A1CD是等邊三角形;
小題2:如圖2,連接AA1、BB1,若△ACA1的面積為S,求△BCB1的面積
小題3:如圖3,設(shè)AC的中點為E,A1B1的中點為P,AC=a,連接EP.求EP的長度最大時∠的度數(shù),并求出此時EP的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=5,BC=3,AC=4,動點E(與點A、C不重合)在AC邊上,EF∥AB交BC于點F.

小題1:當(dāng)△ECF的面積與四邊形EABF的面積相等時,求CE的長
小題2:當(dāng)△ECF的周長與四邊形EABF的周長相等時,求CE的長
小題3:試問在AB上是否存在點P,使得△EFP為等腰直角三角形?若不存在,請簡要說明理由;若存在,請求出EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一條小“魚”的頭部點O的坐標(biāo)為(0,0),其魚鰭部位點A的坐標(biāo)為(3,2).
小題1:請以點O為位似中心,在方格中畫出一條大魚與小魚成位似圖形,且位似比為2;
小題2:在你所畫的圖中找出與點A對應(yīng)的點,記為A’,則點A’的坐標(biāo)為____________.
小題3:兩個立體圖形的體積比是其相似比的立方,如兩個立方體的體積之比為兩立方體棱長之比的立方.根據(jù)這個結(jié)論可知:若小魚的質(zhì)量為1kg,則大魚的質(zhì)量大約為_________kg.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖24,一位同學(xué)想利用樹影測量樹高(AB),他在某一時刻測得高為1m的竹竿影長為0.9 m,但當(dāng)他馬上測量樹影時,因樹靠近一幢建筑物,影子不全落在地面上,有一部分影子在墻上(CD),他先測得留在墻上的影高(CD)為1.2 m,又測得地面部分的影長(BC)為2.7 m,他測得的樹高應(yīng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

等邊△ABC邊長為6,PBC邊上一點,∠MPN=60°,且PMPN分別于邊AB、AC交于點E、F.(1)如圖1,當(dāng)點PBC的三等分點,且PEAB時,判斷△EPF的形狀;

(2)如圖2,若點PBC邊上運動,且保持PEAB,設(shè)BP=x,四邊形AEPF面積的y,求yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)如圖3,若點PBC邊上運動,且∠MPN繞點P旋轉(zhuǎn),當(dāng)CF=AE=2時,求PE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列各組中的四條線段成比例的是(   )
A.a(chǎn)=3cm, b=4cm, c="5cm" ,d=6cmB.a(chǎn)=3cm, b=2cm, c=6cm, d=4cm
C.a(chǎn)="1cm" ,b="2cm" ,c="3cm" ,d=4cmD.a(chǎn)=3cm, b=2cm, c="5cm" ,d=4cm

查看答案和解析>>

同步練習(xí)冊答案