【題目】如圖,已知,,.試說明直線垂直.(請在下面的解答過程的空格內填空或在括號內填寫理由).

理由:,(已知)

    ,  

    

,(已知)

  .(等量代換)

    ,  

  

,(已知)

,

    

【答案】GD,AC,同位角相等,兩直線平行;∠DAC,兩直線平行,內錯角相等;∠DAC;AD,EF,同旁內角互補,兩直線平行;兩直線平行,同位角相等;AD,BC.

【解析】

結合圖形,根據(jù)平行線的判定和性質逐一進行填空即可.

∵∠1=C,(已知)

GDAC,(同位角相等,兩直線平行)

∴∠2=DAC.(兩直線平行,內錯角相等)

又∵∠2+3=180°,(已知)

∴∠3+DAC=180°.(等量代換)

ADEF,(同旁內角互補,兩直線平行)

∴∠ADC=EFC.(兩直線平行,同位角相等)

EFBC,(已知

∴∠EFC=90°,

∴∠ADC=90°,

ADBC.

故答案為:GDAC,同位角相等,兩直線平行;∠DAC,兩直線平行,內錯角相等;∠DACAD,EF,同旁內角互補,兩直線平行;兩直線平行,同位角相等;AD,BC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知正方形ABCD的邊長為5,點E在邊AB上,AE=3,延長DA至點F,使AF=AE,連結EF.將△AEF繞點A順時針旋轉0°<90°),如圖2所示,連結DE、BF

1)請直接寫出DE的取值范圍:_______________________;

2)試探究DEBF的數(shù)量關系和位置關系,并說明理由;

3)當DE=4時,求四邊形EBCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:請你添加一個條件_____可以得到

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,O為坐標原點,拋物線y=﹣ ax2+ ax+3a(a≠0)與x軸交于A和點B(A在左,B在右),與y軸的正半軸交于點C,且OB=OC.

(1)求拋物線的解析式;
(2)若D為OB中點,E為CO中點,動點F在y軸的負半軸上,G在線段FD的延長線上,連接GE、ED,若D恰為FG中點,且SGDE= ,求點F的坐標;
(3)在(2)的條件下,動點P在線段OB上,動點Q在OC的延長線上,且BP=CQ.連接PQ與BC交于點M,連接GM并延長,GM的延長線交拋物線于點N,連接QN、GP和GB,若角滿足∠QPG﹣∠NQP=∠NQO﹣∠PGB時,求NP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAP+APD=180°,∠1=2,求證:∠E=F

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù)y=x2﹣2mx﹣3,下列結論錯誤的是(
A.它的圖象與x軸有兩個交點
B.方程x2﹣2mx=3的兩根之積為﹣3
C.它的圖象的對稱軸在y軸的右側
D.x<m時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了增強人們的節(jié)約用水意識,環(huán)節(jié)城市用水壓力。某市規(guī)定,每月用水18立方米以內(含18立方米)和用水18立方米以上采取兩種不同的收費標準.下圖為該市的用戶每月應交水費y(元)關于用水量x(立方米)的函數(shù)圖像.思考并回答下列問題:

(1)求出用水量小于18立方米時,每月應交水費y(元)關于用水量x(立方米)的函數(shù)表達式.

(2)若小明家某月交水費81元,則這個月用水量為多少立方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ABCD相交于點O,射線OEAB于點O,射線OFCD于點O,且∠AOF25°.求∠BOC與∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖②的形狀拼成一個正方形.

1)圖②中的陰影部分的面積為________;

2)觀察圖②,三個代數(shù)式(m+n2 , mn2 , mn之間的等量關系是________

3)觀察圖③,你能得到怎樣的代數(shù)等式呢?

4)試畫出一個幾何圖形,使它的面積能表示(m+n)(m+3n);

5)若x+y=6,xy=2.75,求xy的值.

查看答案和解析>>

同步練習冊答案