【題目】關(guān)于二次函數(shù)y=2x2+4x-3,下列說法正確的是( )
A.圖象與軸的交點坐標(biāo)為
B.圖象的對稱軸在軸的右側(cè)
C.當(dāng)時,的值隨值的增大而減小
D.的最小值為-5
【答案】D
【解析】
根據(jù)二次函數(shù)一般形式中c=-3可對A選項進(jìn)行判斷;利用對稱軸為x==-1可對B、C進(jìn)行判斷,把二次函數(shù)解析式變形為頂點式的形式即可得函數(shù)的最小值面即可對D進(jìn)行判斷,綜上即可得答案.
二次函數(shù)y=2x2+4x-3中,a=2,b=4,c=-3,
∵a>0,c=-3,
∴函數(shù)圖象的開口向上,與y軸的交點坐標(biāo)為(0,-3),故A選項錯誤,
∵對稱軸為x==-1,
∴圖象的對稱軸在y軸的左側(cè),故B選項錯誤,
∴當(dāng)x<-1時,y的值隨x的增大而減小,故C選項錯誤,
∵y=2x2+4x-3=2(x+1)2-5,
∴y的最小值為-5,故D選項正確,
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連結(jié)EF、EO,若DE=,∠DPA=45°.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是的內(nèi)接正方形,,、是的兩 條切線,、為切點.
(1)如圖1,求的半徑;
(2)如圖1,若點是的中點,連結(jié),求的長度;
(3)如圖2,若點是邊上任意一點(不含、),以點為直角頂點,在的上方作,交直線于點,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點.
(1)求該拋物線的解析式.
(2)一動點P在(1)中拋物線上滑動且滿足S△ABP=10,求此時P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,為定長,以為直徑的分別交、于點、.聯(lián)結(jié)、.下列結(jié)論:①;②點到的距離不變;③;④為外接圓的切線.其中正確的結(jié)論是( )
A.①②B.③④C.①②③D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC,∠ABC=90°,頂點A在第一象限,頂點B、C在x軸的正半軸上(C在B的右側(cè)),,△ADC與△ABC關(guān)于AC所在的直線對稱.
(1)當(dāng)OB=2時,求點D的坐標(biāo).
(2)若點和點在同一個反比例函數(shù)圖象上,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)x>0時,的解集.
(3)點P是x軸上的一動點,試確定點P并求出它的坐標(biāo),使PA+PB最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商城某種商品平均每天可銷售20件,每件盈利30元,為慶元旦,決定進(jìn)行促銷活動,經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件.設(shè)該商品每件降價元,請解答下列問題
(1)用含的代數(shù)式表示:
①降價后每售一件盈利 元;
②降價后平均每天售出 件;
(2)在此次促銷活動中,商城若要獲得最大盈利,每件商品應(yīng)降價多少元?獲得最大盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,CD,CE分別是斜邊AB上的高,中線,BC=a,AC=b.
(1)若a=3,b=4,求DE的長;
(2)直接寫出:CD= (用含a,b的代數(shù)式表示);
(3)若b=3,tan∠DCE=,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com