【題目】如圖,直線y=﹣x+2分別與x軸,y軸交于點A,B,點C是反比例函數(shù)y的圖象在第一象限內(nèi)一動點.過點C作直線CDAB.交x軸于點D,交AB于點E.則CEDE的最小值為_____

【答案】

【解析】

連接AC,根據(jù)題意得到A、B的坐標,以及△ADE∽△ABO,即可求得,進一步求得2tan∠CAE,當(dāng)∠CAE最小,即AC與雙曲線x0)只有一個交點時,最小,設(shè)AC的解析式為ykx4k,則,消去y整理得到kx24kx40,當(dāng)AC與雙曲線x0)只有一個交點時,16k2+16k0,解得k的值,即可求得AC的解析式,進而求得C,D、E的坐標,然后根據(jù)平行線分線段成比例求得CEDE的最小值為

解:如圖,連接AC,

直線y=﹣x+2分別與x軸,y軸交于點A,B,

∴A(4,0),B(02),

∵CD⊥AB,

∴∠AED∠AOB90°

∵∠DAE∠BAO,

∴△ADE∽△ABO

,

2tan∠CAE,

當(dāng)∠CAE最小,即AC與雙曲線x0)只有一個交點時,最小,

設(shè)AC的解析式為ykx4k,則,消去y整理得:kx24kx40

當(dāng)AC與雙曲線x0)只有一個交點時,16k2+16k0,解得k=﹣1k0(舍去),

∴AC的解析式為y=﹣x+4,

,

∴C(2,2)

設(shè)CD的解析式為y2x+n,則24+n,

解得n=﹣2

∴CD的解析式為y2x2,

∴D(1,0)

,

∴E),

E點作MN⊥x軸于N,交過C點與x軸平行的直線于M,

∴MC∥DN,

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)片的圖象如圖所示,下列說法:

ab0; 

②函數(shù)yax+d不經(jīng)過第一象限;

③函數(shù)ycx+b中,yx的增大而增大;

3a+b3c+d

其中正確的個數(shù)有()

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點Ax軸負半軸上,點By軸正半軸上,線段OB的長是方程x22x80的解,tanBAO

1)求點A的坐標;

2)點Ey軸負半軸上,直線EC交線段AB于點C,交x軸于點D.若C點坐標為(-6m),求:直線AB的表達式和經(jīng)過點C得反比例函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】成都市某公司自主設(shè)計了一款可控溫杯,每個生產(chǎn)成本為16元,投放市場進行了試銷.經(jīng)過調(diào)查得到每月銷售量y(萬個)與銷售單價x(元/個)之間關(guān)系是一次函數(shù)的關(guān)系,部分數(shù)據(jù)如下:

銷售單價x(元/個)

20

25

30

35

每月銷售量y(萬個)

60

50

40

30

1)求yx之間的函數(shù)關(guān)系;

2)該公司既要獲得一定利潤,又要符合相關(guān)部門規(guī)定(一件產(chǎn)品的利潤率不得高于50%)請你幫助分析,公司銷售單價定為多少時可獲利最大?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,AO平分∠BAC,交BC于點O.以O為圓心,OC為半徑作⊙O,分別交AO,BC于點E,F

1)求證:AB是⊙O的切線;

2)延長AO交⊙O于點D,連接CD,若AD2AC,求tanD的值;

3)在(2)的條件下,設(shè)⊙O的半徑為3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推廣勞動教育,美化校園環(huán)境,學(xué)校決定在農(nóng)場基地鋪設(shè)一條觀景小道.經(jīng)設(shè)計,鋪設(shè)這條小道需A,B兩種型號石磚共200塊.已知:購買3A型石磚,2B型石磚需要110元;購買5A型石磚,4B型石磚需要200元.

1)求A,B兩種型號石磚單價各為多少元?

2)已知B型石磚正在進行促銷活動:購買B型石磚數(shù)量在60塊以內(nèi)(包括60塊)時,不優(yōu)惠;購買B型石磚數(shù)量超過60塊時,每超過1塊,購買的所有B型石磚單價均降0.05元,問:學(xué)校采購石磚,最多需要多少預(yù)算經(jīng)費?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次臺風(fēng)來襲時,一棵筆直大樹樹干AB(假定樹干AB垂直于水平地面)被刮傾斜7°(即∠BAB′=7°)后折斷倒在地上,樹的頂部恰好接觸到地面D處,測得∠CDA37°,AD5米,求這棵大樹AB的高度.(結(jié)果保留根號)(參考數(shù)據(jù):sin370.6,cos370.8,tan370.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解家長和學(xué)生參與全國中小學(xué)生新冠肺炎疫情防控專題教育的情況,在本校學(xué)生中隨機抽取部分學(xué)生作調(diào)查,把收集的數(shù)據(jù)分為以下4類情形:A.僅學(xué)生自己參與;B.家長和學(xué)生一起參與;C.僅家長參與;D.家長和學(xué)生都未參與.請根據(jù)圖中提供的信息,解答下列問題:

(1)在這次抽樣調(diào)查中,共調(diào)查了______名學(xué)生;

(2)C類所對應(yīng)扇形的圓心角的度數(shù)是_______,并補全條形統(tǒng)計圖;

(3)根據(jù)抽樣調(diào)查結(jié)果,試估計該校1800名學(xué)生中家長和學(xué)生都未參與的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2bxca0)交x軸于AB兩點(AB的左側(cè)),交y軸于點C,拋物線的頂點為P,過點BBC的垂線交拋物線于點D

1)若點P的坐標為(-4,-1),點C的坐標為(0,3),求拋物線的表達式;

2)在(1)的條件下,求點A到直線BD的距離;

3)連接DC,若點P的坐標為(-,-),DCx軸,則在x軸上方的拋物線上是否存在點M,使∠AMB=∠BDC?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案