精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系xoy中,四邊形OABC是正方形,點(diǎn)A的坐標(biāo)為(m,0).將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角,得到正方形ODEF,DE與邊BC交于點(diǎn)M,且點(diǎn)M與B、C不重合.
(1)請(qǐng)判斷線(xiàn)段CD與OM的位置關(guān)系,其位置關(guān)系是
 
;
(2)試用含m和α的代數(shù)式表示線(xiàn)段CM的長(zhǎng):
 
;α的取值范圍是
 
分析:(1)連接CD,OM.根據(jù)旋轉(zhuǎn)的性質(zhì)得出MC=MD,OC=OD,再證明△COM≌△DOM,得出∠COM=∠DOM,然后根據(jù)等腰三角形三線(xiàn)合一的性質(zhì)得出CD⊥OM;
(2)首先用含α的代數(shù)式表示∠COM,然后在Rt△COM中,根據(jù)正切函數(shù)的定義即可得出CM的長(zhǎng)度;由OD與OM不能重合,且只能在OC右邊,得出α的取值范圍.
解答:精英家教網(wǎng)解:(1)連接CD,OM.
根據(jù)旋轉(zhuǎn)的性質(zhì)可得,MC=MD,OC=OD,又OM是公共邊,
∴△COM≌△DOM,
∴∠COM=∠DOM,
又∵OC=OD,
∴CD⊥OM;

(2)由(1)知∠COM=∠DOM,
∴∠COM=
90°-α
2

在Rt△COM中,CM=OC•tan∠COM=m•tan
90°-α
2
;
因?yàn)镺D與OM不能重合,且只能在OC右邊,故可得α的取值范圍是0°<α<90°.
點(diǎn)評(píng):解答本題要充分利用正方形的特殊性質(zhì),注意在正方形中的特殊三角形的應(yīng)用,搞清楚矩形、菱形、正方形中的三角形的三邊關(guān)系,有助于提高解題速度和準(zhǔn)確率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
9x
的圖象在第一象限相精英家教網(wǎng)交于點(diǎn)A,過(guò)點(diǎn)A分別作x軸、y軸的垂線(xiàn),垂足為點(diǎn)B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(-2,0)和(2,0).月牙①繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到月牙②,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系中,一顆棋子從點(diǎn)P處開(kāi)始依次關(guān)于點(diǎn)A,B,C作循環(huán)對(duì)稱(chēng)跳動(dòng),即第一次從點(diǎn)P跳到關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn)M處,第二次從點(diǎn)M跳到關(guān)于點(diǎn)B的對(duì)稱(chēng)點(diǎn)N處,第三次從點(diǎn)N跳到關(guān)于點(diǎn)C的對(duì)稱(chēng)點(diǎn)處,…如此下去.
(1)在圖中標(biāo)出點(diǎn)M,N的位置,并分別寫(xiě)出點(diǎn)M,N的坐標(biāo):
 

(2)請(qǐng)你依次連接M、N和第三次跳后的點(diǎn),組成一個(gè)封閉的圖形,并計(jì)算這個(gè)圖形的面積;
(3)猜想一下,經(jīng)過(guò)第2009次跳動(dòng)之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系xoy中,有一組對(duì)角線(xiàn)長(zhǎng)分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對(duì)角線(xiàn)OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點(diǎn)重合),依上述排列方式,對(duì)角線(xiàn)長(zhǎng)為n的第n個(gè)正方形的頂點(diǎn)An的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+3(a≠0)經(jīng)過(guò)A(-1,0)、B(3,0)兩點(diǎn),拋物線(xiàn)與y軸交點(diǎn)為C,其頂點(diǎn)為D,連接BD,點(diǎn)P是線(xiàn)段BD上一個(gè)動(dòng)點(diǎn)(不與B、D重合),過(guò)點(diǎn)P作y軸的垂線(xiàn),垂足為E,連接精英家教網(wǎng)BE.
(1)求拋物線(xiàn)的解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)如果P點(diǎn)的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當(dāng)s取得最大值時(shí),過(guò)點(diǎn)P作x的垂線(xiàn),垂足為F,連接EF,把△PEF沿直線(xiàn)EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P',請(qǐng)直接寫(xiě)出P'點(diǎn)坐標(biāo),并判斷點(diǎn)P'是否在該拋物線(xiàn)上.

查看答案和解析>>

同步練習(xí)冊(cè)答案