精英家教網 > 初中數學 > 題目詳情
(2005•漳州)如圖,一鐵路路基的橫截面是等腰梯形,∠B=∠C=45°,根據圖中數據計算路基的高為    m.
【答案】分析:根據已知可證得△ABE≌△DCF,從而可求得BE的長,再根據已知即可求得高的長.
解答:解:由題意易得△ABE≌△DCF
∴BE=CF=(14-4)÷2=5m,又∠B=∠C=45°,AE=BE=5m.
點評:本題主要考查等腰梯形的性質的應用.
練習冊系列答案
相關習題

科目:初中數學 來源:2011年廣東省深圳市中考數學模擬試卷一(解析版) 題型:解答題

(2005•漳州)如圖,已知拋物線的頂點坐標為M(1,4),且經過點N(2,3),與x軸交于A、B兩點(點A在點B左側),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標;
(2)若直線y=kx+t經過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P在拋物線的對稱軸x=1上運動,請?zhí)剿鳎涸趚軸上方是否存在這樣的P點,使以P為圓心的圓經過A、B兩點,并且與直線CD相切?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2005•漳州)如圖,已知拋物線的頂點坐標為M(1,4),且經過點N(2,3),與x軸交于A、B兩點(點A在點B左側),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標;
(2)若直線y=kx+t經過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P在拋物線的對稱軸x=1上運動,請?zhí)剿鳎涸趚軸上方是否存在這樣的P點,使以P為圓心的圓經過A、B兩點,并且與直線CD相切?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年陜西省西安市師大附中中考數學模擬試卷(楊麗敏)(解析版) 題型:解答題

(2005•漳州)如圖,已知拋物線的頂點坐標為M(1,4),且經過點N(2,3),與x軸交于A、B兩點(點A在點B左側),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標;
(2)若直線y=kx+t經過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P在拋物線的對稱軸x=1上運動,請?zhí)剿鳎涸趚軸上方是否存在這樣的P點,使以P為圓心的圓經過A、B兩點,并且與直線CD相切?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2005年福建省漳州市中考數學試卷(大綱卷)(解析版) 題型:解答題

(2005•漳州)如圖,已知拋物線的頂點坐標為M(1,4),且經過點N(2,3),與x軸交于A、B兩點(點A在點B左側),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標;
(2)若直線y=kx+t經過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P在拋物線的對稱軸x=1上運動,請?zhí)剿鳎涸趚軸上方是否存在這樣的P點,使以P為圓心的圓經過A、B兩點,并且與直線CD相切?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2005年福建省漳州市中考數學試卷(課標卷)(解析版) 題型:填空題

(2005•漳州)如圖是一個被等分成12個扇形的轉盤.請在轉盤上選出若干個扇形涂上斜線(涂上斜線表示陰影區(qū)域,其中有一個扇形已涂),使得自由轉動這個轉盤,當它停止轉動時,指針落在陰影區(qū)域的概率為   

查看答案和解析>>

同步練習冊答案