【題目】ABCD中,過點(diǎn)DDEAB于點(diǎn)E,點(diǎn)FCD上,CF=AE,連接BF,AF

1)求證:四邊形BFDE是矩形;

2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面積.

【答案】(1)詳見解析;(2)20.

【解析】試題分析:(1)根據(jù)有一個(gè)角是90度的平行四邊形是矩形可判定,

(2)首先證明AD=DF,求出AD即可解決問題.

試題解析: (1)∵四邊形ABCD是平行四邊形,

AB=CD,ABCD,BEDF,

CF=AE,

DF=BE,

∴四邊形BFDE是平行四邊形,

DEAB,∴∠DEB=90°,∴四邊形BFDE是矩形.

(2)因?yàn)?/span>ABCD ,所以∠BAF=AFD,因?yàn)?/span>AF平分∠BAD,所以∠DAF=AFD,所以AD=DF,在直角三角形ADE,因?yàn)?/span>AE=3,DE=4,所以AD=5,所以矩形的面積為20.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△CEF的頂點(diǎn)C、E、F分別與正方形ABCD的頂點(diǎn)CA、B重合.

1)若正方形的邊長為,用含的代數(shù)式表示:正方形ABCD的周長等于 ,△CEF的面積等于

2)如圖2,將△CEF繞點(diǎn)A順時(shí)針旋轉(zhuǎn),邊CE和正方形的邊AD交于點(diǎn)P 連結(jié)AE, 設(shè)旋轉(zhuǎn)角∠BCF=β

①試證:∠ACF=DCE;

②若△AEP有一個(gè)內(nèi)角等于60°,求β的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ADABC的中線,AEABAFAC,且AE=AB,AF=AC,AD=3,AB=4

1)求AC長度的取值范圍;

2)求EF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為5cm的等邊三角形,點(diǎn)P,Q分別從頂點(diǎn)AB同時(shí)出發(fā),沿線段ABBC運(yùn)動(dòng),且它們的速度都為1cm/s.當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts).

1)當(dāng)t為何值時(shí),PBQ是直角三角形?

2)連接AQ、CP,相交于點(diǎn)M,則點(diǎn)P,Q在運(yùn)動(dòng)的過程中,CMQ會(huì)變化嗎?若變化,則說明理由;若不變,請(qǐng)求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣,為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的漢字聽寫大賽為了解本次大賽的成績,校團(tuán)委隨機(jī)抽取了其中若干名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:

成績

頻數(shù)

頻率

10

 

30

 

40

n

 

m

 

50

a

1

請(qǐng)根據(jù)所給信息,解答下列問題:

______,______,______;

補(bǔ)全頻數(shù)直方圖;

這若干名學(xué)生成績的中位數(shù)會(huì)落在______分?jǐn)?shù)段;

若成績?cè)?/span>90分以上包括90的為優(yōu)等,請(qǐng)你估計(jì)該校參加本次比賽的3000名學(xué)生中成績是優(yōu)等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】聯(lián)華商場(chǎng)以150元/臺(tái)的價(jià)格購進(jìn)某款電風(fēng)扇若干臺(tái),很快售完.商場(chǎng)用相同的貨款再次購進(jìn)這款風(fēng)扇,因價(jià)格提高30元,進(jìn)貨量減少了10臺(tái).

(1)這兩次各購進(jìn)電風(fēng)扇多少臺(tái)?

(2)商場(chǎng)以250元/臺(tái)的售價(jià)賣完這兩批電風(fēng)扇,商場(chǎng)獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明:如圖,ABCDGH,EG平分∠BEF,FG平分∠EFD

求證:∠EGF90°

證明:∵ABGH(已知),

∴∠1=∠3   ),

又∵CDGH(已知),

   (兩直線平行,內(nèi)錯(cuò)角相等)

ABCD(已知),

∴∠BEF+   180°(兩直線平行,同旁內(nèi)角互補(bǔ))

EG平分∠BEF(已知),

∴∠1    (角平分線定義),

又∵FG平分∠EFD(已知),

∴∠2EFD   ),

∴∠1+2   +EFD

∴∠l+290°,

∴∠3+490°(等量代換),

即∠EGF90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)M為直線AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN

求證: ;

分別寫出點(diǎn)M在如圖2和圖3所示位置時(shí),線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明

如圖4,當(dāng)時(shí),證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為m的正方形面積為12,則下列關(guān)于m的說法中:①m2是有理數(shù);②m的值滿足m2120;③m滿足不等式組;④m12的算術(shù)平方根. 正確有幾個(gè)( 。

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案