【題目】如圖1,一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現(xiàn)正方形ABCD保持不動,將三角尺GEF繞斜邊EF的中點O(點O也是BD中點)按順時針方向旋轉(zhuǎn).

(1)如圖2,當EF與AB相交于點M,GF與BD相交于點N時,通過觀察或測量BM,F(xiàn)N的長度,猜想BM,F(xiàn)N滿足的數(shù)量關系,并證明你的猜想;

(2)若三角尺GEF旋轉(zhuǎn)到如圖3所示的位置時,線段FE的延長線與AB的延長線相交于點M,線段BD的延長線與GF的延長線相交于點N,此時,(1)中的猜想還成立嗎?若成立,請證明;若不成立,請說明理由.

【答案】(1)BM=FN,證明見解析;(2)BM=FN仍然成立,證明見解析.

【解析】試題分析:(1)根據(jù)正方形和等腰直角三角形的性質(zhì)可證明OBM≌△OFN,所以根據(jù)全等的性質(zhì)可知BM=FN;

(2)同(1)中的證明方法一樣,根據(jù)正方形和等腰直角三角形的性質(zhì)得OB=OF,MBO=NFO=135°,MOB=NOF,可證OBM≌△OFN,所以BM=FN.

試題解析:

(1)BM=FN.

證明:∵△GEF是等腰直角三角形,四邊形ABCD是正方形,

∴∠ABD=F=45°,OB=OF.

又∵∠BOM=FON,

∴△OBM≌△OFN.

BM=FN.

(2)BM=FN仍然成立.

證明:∵△GEF是等腰直角三角形,四邊形ABCD是正方形,

∴∠DBA=GFE=45°,OB=OF.

∴∠MBO=NFO=135°.

又∵∠MOB=NOF,

∴△OBM≌△OFN.

BM=FN.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】仔細閱讀材料,再嘗試解決問題:

完全平方式 以及的值為非負數(shù)的特點在數(shù)學學習中有廣泛的應用,比如探求的最大(。┲禃r,我們可以這樣處理:

例如:①用配方法解題如下:

原式=+6x+9+1=

因為無論取什么數(shù),都有的值為非負數(shù),所以的最小值為0;此時 時,進而的最小值是0+1=1;所以當時,原多項式的最小值是1.

請根據(jù)上面的解題思路,探求:

(1)(x+1)2+(y-2)2=0,x= ,y= ..

(2)x2+y2+6x4y+13=0,x,y的值;

(3)的最小值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校組織初一同學春游,原計劃租用45座客車若干輛,但有15人沒有座位;如果租用同樣數(shù)量的60座大客車,則多出一輛,且其余客車恰好坐滿.已知45座客車日租金為每輛220,60座大客車日租金為每輛300.

求:(1)初一年級學生有多少人? 原計劃租用45座客車多少輛?

2)要使每個學生都有座位,怎樣租用更合算?最低租金是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列條件中,①∠A+B=C ②∠ABC=123; ③∠A=B=C

④∠A=B=2C⑤∠A=2B=3C,能確定ABC為直角三角形的條件有(  。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在四邊形ABCD中,∠D=37°,點EBC邊上一點,沿AE折疊,點B落在ADB′處,若B′ECD,則∠B=_________°

2)如圖2,在四邊形ABCD中,ABCD,EBC邊上一點,沿AE折疊,點B落在ADB′處,點FBC邊上一點,沿DF折疊,點C落在ADC′處.B′EC′F有何位置關系?為什么?

3如圖3,在四邊形ABCD中,∠B=D=90°,EBC邊上一點,沿AE折疊,點B落在ADB′處,點FAD邊上一點,沿CF折疊,點D落在BCD′處.試問:AECF有何位置關系?說明理由.

4)在四邊形ABCD中,點EBC邊上一點,沿AE折疊.

①若點B落在四邊形ABCD內(nèi)B′處(如圖4),則∠12,BAD,B之間的數(shù)量關系為________

②若點B落在四邊形ABCDB′處(如圖5),則∠12,BAD,B之間的數(shù)量關系為 ______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一塊四邊形綠地的示意圖,其中AB長為24米,BC長15米,CD長為20米,DA長7米,C=90°,求綠地ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展了手機伴我健康行主題活動.他們隨機抽取部分學生進行手機使用目的每周使用手機時間的問卷調(diào)查,并繪制成如圖的統(tǒng)計圖。已知查資料人人數(shù)是40人。

請你根據(jù)以上信息解答以下問題

1)在扇形統(tǒng)計圖中,玩游戲對應的圓心角度數(shù)是_______________。

2)補全條形統(tǒng)計圖

3)該校共有學生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC和△ADE關于直線l對稱,下列結論:①△ABC≌△ADE;l垂直平分DB;③∠CE;BCDE的延長線的交點一定落在直線l其中錯誤的有(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個城鎮(zhèn)A、B與兩條公路l1、l2位置如圖所示,電信部門需在C處修建一座信號發(fā)射塔,要求發(fā)射塔到兩個城鎮(zhèn)A、B的距離必須相等,到兩條公路l1,l2的距離也必須相等,那么點C應選在何處?請在圖中,用尺規(guī)作圖找出所有符合條件的點C.(不寫已知、求作、作法,只保留作圖痕跡)

查看答案和解析>>

同步練習冊答案