【題目】如圖,銳角△ABC內(nèi)接于⊙O,點(diǎn)D在⊙O外(與點(diǎn)C在AB同側(cè)),∠ABD=90°,下列結(jié)論:①sinC>sinD;②cosC>cosD;③tanC>tanD,正確的結(jié)論為(
A.①②
B.②③
C.①②③
D.①③

【答案】D
【解析】解:設(shè)BD交⊙O于點(diǎn)E,連接AE, ∵∠C=∠AEB,∠AEB>∠D,
∴∠C>∠D,
∴sin∠C>sin∠D;cos∠C<cos∠D;tan∠C>tan∠D,
∴正確的結(jié)論有:①③.
故選D.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解三角形的外接圓與外心(過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心),還要掌握解直角三角形(解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尺規(guī)作圖特有的魅力曾使無數(shù)人沉湎其中,連當(dāng)年叱咤風(fēng)云的拿破侖也不例外,我們可以只用圓規(guī)將圓等分.例如可將圓6等分,如圖只需在⊙O上任取點(diǎn)A,從點(diǎn)A開始,以⊙O的半徑為半徑,在⊙O上依次截取點(diǎn)B,C,D,E,F(xiàn).從而點(diǎn)A,B,C,D,E,F(xiàn)把⊙O六等分.下列可以只用圓規(guī)等分的是( ) ①兩等分 ②三等分 ③四等分 ④五等分.

A.②
B.①②
C.①②③
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對(duì)多項(xiàng)式x2-4x+2)(x2-4x+6+4進(jìn)行因式分解的過程.

解:設(shè)x2-4x=y

原式=y+2)(y+6+4第一步

= y2+8y+16第二步

=y+42 第三步

=x2-4x+42第四步

回答下列問題:

1該同學(xué)第二步到第三步運(yùn)用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2該同學(xué)因式分解的結(jié)果是否徹底?________填“徹底”或“不徹底”

若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_________.

3請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式x2-2x)(x2-2x+2+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,過點(diǎn)D作DE⊥AD交AB于點(diǎn)E,以AE為直徑作⊙O.
(1)求證:BC是⊙O的切線;
(2)若AC=3,BC=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC在正方形網(wǎng)格中的位置如圖所示,則點(diǎn)P是△ABC的(
A.外心
B.內(nèi)心
C.三條高線的交點(diǎn)
D.三條中線的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的外心為O,內(nèi)心為I,∠BOC=120°,∠BIC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:
+ = ;
+ = ;
+ = ;
+ = ;

(1)請(qǐng)按以上規(guī)律寫出第⑤個(gè)等式:;
(2)猜想并寫出第n個(gè)等式:;
(3)請(qǐng)證明猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共50件.已知A產(chǎn)品每件可獲利潤1200元,B產(chǎn)品每件可獲利潤700元,設(shè)生產(chǎn)兩種產(chǎn)品的獲利總額為y(元),生產(chǎn)A產(chǎn)品x(件).

(1)寫出yx之間的函數(shù)關(guān)系式;

(2)若生產(chǎn)A、B兩種產(chǎn)品的件數(shù)均不少于10件,求總利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是雙曲線y= (x>0)上的一動(dòng)點(diǎn),過A作AC⊥y軸,垂足為點(diǎn)C,作AC的垂直平分線交雙曲線于點(diǎn)B,交x軸于點(diǎn)D.當(dāng)點(diǎn)A在雙曲線上從左到右運(yùn)動(dòng)時(shí),對(duì)四邊形ABCD的面積的變化情況,小明列舉了四種可能:
①逐漸變;
②由大變小再由小變大;
③由小變大再由大變小;
④不變.
你認(rèn)為正確的是 . (填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案